

# **CLASSROOM CONTACT PROGRAMME**

TARGET: JEE (MAIN + ADVANCED) 2022

**COURSE: R-VIJETA (R-JP)** 

**JEE MAIN** 

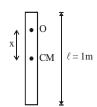
MFST-1

23-01-2022

# **HINTS & SOLUTIONS**

# PART: I PHYSICS SECTION-I

## 1. (1)



$$I_0 = \frac{m\ell^2}{12} + mx^2$$

$$T= 2\pi \sqrt{\frac{I_0}{mgx}} = 2(given)$$

$$I_0 = mx \left[\because \sqrt{g} = \pi \right]$$

$$\Rightarrow \frac{m}{12} + mx^2 = mx \Rightarrow 12x^2 - 12x + 1 = 0$$

#### 2. (4)

$$Wd_{ext} = \Delta U = -\vec{M}.\vec{B}$$

Case-1

$$W = -MB \cos 60^{\circ} - (-MB \cos 0^{\circ})$$

$$\Rightarrow$$
 MB = 2W

Case-2

$$W' = -MB \cos 120^{\circ} - (-MB \cos 60^{\circ})$$

$$W' = MB = 2W$$

#### 3. (2)

$$\rho \propto \frac{1}{T} (given)$$

ideal gas equation

$$P = \frac{\rho}{M}RT$$

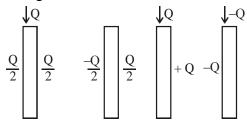
For constant pressure,  $\rho \propto \frac{1}{T}$ 

⇒ Process is isobaric

so, 
$$C_P = \frac{5R}{2}$$
, for monoatomic gas.

#### 4. (3)

Charge disribution



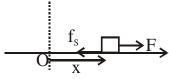
$$E_0 = \frac{1}{2} \left(\frac{Q}{2}\right)^2 \times \frac{1}{C} \qquad E = \frac{1}{2} \frac{Q^2}{C}$$

$$E_0 = \frac{Q^2}{8C}$$
  $E = 4E_0$ 

## **5.** (3)

Green house effect involves "heating effect" which is brought about by "heat waves" of infrared rays.

#### **6.** (3)



$$wd = \int (F - f_s) dx$$

$$=\int\limits_{-L}^{L}\!\!\left(\frac{mg}{L}\big|x\big|\!-\!mg\frac{\mu_0\big|x\big|}{L}\!\right)\!\!dx$$

$$wd = \frac{mg}{L} (1 - \mu_0) \int_{L}^{L} |x| dx$$

$$= \frac{mg(1-\mu_0)}{L} \int_{0}^{L} 2x dx$$

$$wd = mg(1 - \mu_0)L$$

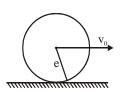
$$wd = \Delta KE$$

$$mg(1 - \mu_0)L = \frac{1}{2}mv_0^2$$





**7.** (3)



$$v' = \frac{2v_0}{3}$$

$$I = mv_0 - mv'$$

$$I = \frac{mv_0}{3}$$

8. (2)

$$i = \frac{\varepsilon}{Res} = \frac{BDA}{t(Res.)} = \frac{B \times \pi \left(R^2 - \frac{R^2}{4}\right)}{t \times 2\pi R\lambda}$$

$$= \frac{B \times \pi 3R^2}{4 \times t \times 2\pi \lambda}$$

$$i = \frac{3BR}{8t\lambda}$$

$$Q = it = \frac{3BR}{8\lambda}$$

9. (2)

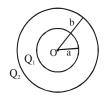
 $g = g_0 (1 + \beta \sin^2 \phi)$  (for small changes)

$$\Delta g = \beta g_0 \ 2 sin \phi \cos \beta \ \Delta \phi$$

$$\Delta g = bg_0 \sin 2\phi \Delta \phi$$

$$\Delta \phi = \frac{\Delta g}{\beta g_0 \sin 2\phi}$$

**10.** (1)



Given 
$$Q_1 + Q_2 = Q$$

$$\frac{Q_{1}}{4\pi a^{2}} = \frac{Q_{2}}{4\pi b^{2}}$$

$$\frac{\mathbf{Q}_1}{\mathbf{Q}_2} = \frac{\mathbf{a}^2}{\mathbf{b}^2}$$

$$V_0 = \frac{kQ_1}{a} + \frac{kQ_2}{b}$$

$$= \frac{k}{a} \times \left( \frac{a^2}{a^2 + b^2} \times Q \right) + \frac{k}{b} \left( \frac{b^2}{a^2 + b^2} \times Q \right)$$

$$= \frac{kQ}{a^2 + b^2} (a + b)$$

- **11.** (1)
- **12.** (4)

$$W_0 = \frac{hC}{\lambda_0}$$

$$\lambda_0 = \frac{hC}{W_0} = \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{6.63 \times 10^{-19}}$$

$$\lambda_0 = 3 \times 10^{-7}$$

$$\lambda_0 = 300 \text{ nm}$$

For photoelectric emission

$$\lambda < \lambda_0$$

**13.** (3)

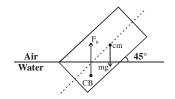
$$v = \sqrt{\frac{T}{\mu}} = \sqrt{\frac{T}{\rho A}}$$

$$Y = \frac{T\ell}{A\Lambda\ell} = \frac{T\ell}{A\ell\alpha t} = \frac{T}{A\alpha t}$$

$$T = YA\alpha t$$

$$v = \sqrt{\frac{YA\alpha t}{\rho A}} = \sqrt{\frac{Y\alpha t}{\rho}}$$





$$\tau = F_{\rm B} \, \frac{a}{2\sqrt{2}}$$

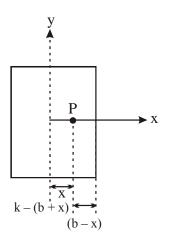
$$\tau = \left[ \rho_{\rm w} \, \frac{a^2}{2} \, xg \, \right] \frac{a}{2\sqrt{2}}$$

$$w = \rho_B 2a^2 xg$$

$$\rho_{\rm w} = 1 g / cm^3, \rho_{\rm B} = \frac{1}{4} g / cm^3$$

$$\tau = \frac{aW}{2\sqrt{2}}$$

- **15.** (2)
- **16.** (2)
- **17.** (1)
- **18.** (3)

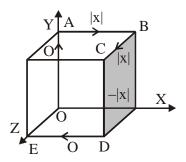


$$B_p = \mu_0 \frac{J(b+x)}{2} - \mu_0 J \frac{(b-x)}{2} + \frac{\mu_0 K}{2}$$

$$B_{_P}=\mu_{_0}Jx+\mu_{_0}Jb$$

$$B_{\scriptscriptstyle P} = \mu_0 J(b\!+x)$$

**19.** (2)



20. (1)

Resistance of Bulb: 
$$R = \frac{(110)^2}{55} = 220\Omega$$

Now in Series R-L Circuit rms voltage across R must be 110 V. Therefore rms current in the circuit will be 1/2 A.

$$Z = \frac{220}{1/2} = 2 \times 220 = 440 \Omega$$

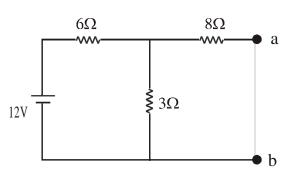
$$X_1^2 = Z^2 - R^2 = 440^2 - 220^2 = 145200$$

$$X_{t} = 381\Omega = \omega L = 2\pi \times 50 \times L$$

$$X_L \approx 1.2 H$$

#### **SECTION-II**

1. (00.40)



$$P_{\text{max}} = \frac{\left(V_{\text{ab}}\right)^2}{4R}$$

$$V_{ab} = 4$$
volt

$$R_{ab} = 10\Omega$$





## **2.** (37)

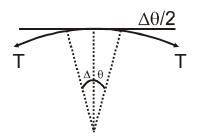
Consider this as horizontal projection from tower whose: Range =  $\ell \sin\theta$  and Vertical height =  $\ell(1-\cos\theta)$ 

$$T = \sqrt{\frac{2h}{g}} = \sqrt{\frac{2(1-\cos\theta)}{10}} = \sqrt{\frac{(1-\cos\theta)}{5}}$$

$$R = u.T = 3.\sqrt{\frac{(1-\cos\theta)}{5}} = \sin\theta$$

On solving:  $\theta = 37^{\circ}$ 

# **3.** (2)



$$2T \sin \frac{\Delta \theta}{2} = d m\omega^2 r$$

$$2T\left(\frac{\Delta\theta}{2}\right) = \rho \times A \times r\Delta\theta \times \omega^2 \times r$$

$$\sigma = \frac{\mathsf{T}}{\mathsf{A}} = \rho r^2 \ \omega^2$$

$$\therefore$$
  $\omega = \sqrt{\frac{\sigma}{\rho}} = 2 \text{ rad/s}$ 

## 4. (4)



Using; 
$$V_A - V_B = RI + \frac{dI}{dt}L$$
$$140 = 5R + 10 L$$
$$60 = 5R - 10 L$$
$$\Rightarrow L = 4H.$$

## **5.** (8.00)

Resonance frequency for both rod is same.

$$f = \frac{nv}{2\ell_0}$$
,  $\ell_0 = length of rod, n = no. of loops$ 

for ques.

$$\frac{1 \times \sqrt{\frac{80}{\mu}}}{2 \times 2\ell} = \frac{4 \times \sqrt{\frac{10}{\mu'}}}{2 \times \ell} \Rightarrow \frac{80}{\mu} = 64 \times \frac{10}{\mu'}$$

$$\frac{\mu'}{\mu} = 8$$

**6.** (220.00)

Heat gain = Heat loss

$$(10 \times L_{ice} + 70 \times S_{W} \times 20)$$

$$= m \times \frac{S_w}{3} \times (50 - 20)$$

$$800 + 1400 = m \times 10$$

$$m = 220 g$$

- **7.** (0.05)
- **8.** (5)

If  $X_L = X_C$  current will be same,

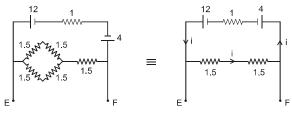
So, 
$$V_L = V_C$$
;

$$\therefore V_{L}' = 1 \times 2\pi \times 30 \times \frac{1}{\pi} = 60 \text{ Volt}$$

$$V_{R} = 80 \times 1 = 80 \text{ volt}$$



## 9. (2)



$$i = \frac{12 - 4}{1 + 1.5 + 1.5} = \frac{8}{4} = 2A$$

$$V_{EF} = 3 \times 2 = 6V$$

$$2V + V = 6$$

$$V = 2$$

$$V = \sqrt{V_L^{12} + V_R^2} = \sqrt{(80)^2 + (60)^2} = 100 \text{ Volt}$$

## 10. (4)

Before collision, linear momentum of the system is zero. Therefore, after collision momentum of B will be equal and opposite to momentum of C (since  $P_A = 0$ )

#### **PART: II CHEMISTRY**

## 1. (3)

 $H_4P_2O_7$ 

$$4(+1) + x + 7(-2) = 0$$

x = +5

H<sub>4</sub>P<sub>2</sub>O<sub>5</sub>

$$4(+1) + x + 5(-2) = 0$$

x = +3

 $H_4P_2O_6$ 

$$4(+1) + x + 6(-2) = 0$$

x = +4

## 2. (2)

 $SO_2(g)$  is adsorbed to a larger extent than  $H_2(g)$  because it is polar and have higher critical temperature than  $H_2(g)$ .

#### **3.** (3)

Correct order of ionisation enthalpy is

$$Al < Mg < S < P$$

In a period from left to right, atomic size decreases and Zeff increases, therefore I.E. increases. Due to stable configuration, Mg has higher I.E. than Al and P has higher than S.

## 4. (4)

According the Thomson model, all positive charge is spread over atom. Therefore heavy  $\alpha$ -particles pass through the foil with decrease in speed and are deflected by small angles.

## **5.** (4)

#### **6.** (2)

During the extraction of copper from its sulphide ore, silica converts iron oxide into iron silicate slag.

#### **7.** (4)

Depression in freezing point  $\infty$  i (Van't Hoff factor)

For hydrazine  $(NH_2-NH_2)$  i=1

For Glucose  $(C_6H_{12}O_6)$  i = 1

For Glycine (NH<sub>2</sub>–CH<sub>2</sub>–COOH) i = 1

For KHSO<sub>4</sub> ( $K^+$ , HSO<sub>-4</sub>) i = 2

Hence, solution having KHSO<sub>4</sub> will exhibit the largest freezing point depression.



**8.** (1)

Cell constant: m<sup>-1</sup>

Molar conductivity: Scm<sup>2</sup>mol<sup>-1</sup>

Conductivity:  $\Omega^{-1}$ m<sup>-1</sup>

Degree of dissociation of electrolyte : dimensionless

9. (1)

Lithium salts are hydrated due to high hydration energy of Li<sup>+</sup>

Li<sup>+</sup> due to smallest size in IA group has highest polarizing power.

**10.** (4)

Fe<sup>+2</sup>(aq) (Green colour)

Fe<sup>+3</sup>(aq) (Yellow colour)

11. (2)

Aniline is more basic than acetamide because in acetamide, lone pair of nitrogen is atom present in conjugation with oxygen atom.

$$\begin{array}{c} \overset{\bullet}{\text{NH}_2} \\ & \overset{\bullet}{\text{O}} \\ & > \text{CH}_3\text{-C-NH}_2 \end{array} \qquad \text{basic strength}$$

**12.** (3)

- (1) Eutrophication: The process in which nutrient enriched water bodies support a dense plant population, which kills animal life by depriving it of oxygen and results in subsequent loss of biodiversity.
- (2) If the concentration of dissolved oxygen (DO) of water is below 6 ppm, the growth of fish gets inhibited.
- (3) Eutrophication leads to decreases oxygen level in water.
- (4) Eutrophication leads to anaerobic conditions due to decrease dissolved oxygen in water.

13. (4)

HI is very good reducing agent so we use oxidising reagent such as HIO<sub>3</sub> and HNO<sub>3</sub>

**14. (3)** 

Barfoed test is given by Glucose, Fructose, Maltose, Lactose, (for mono saccharides only)

**15.** (4)

- (a) Furacin is antiseptic which either kill or prevent the growth of microorganism.
- (b) Arsphenamine is antibiotics which treat infections because of their low toxicity for humans and animals.
- (c) Dimetone is synthetic antihistamines. They interfere with the natural action of histamine by competing with histamine for binding sites of receptor where histamine exerts its effect.
- (d) Valium is transquilizers (neurologically active drug).

**16.** (4)

**17.** (3)

$$R-C \equiv N \xrightarrow{(1) \text{ DIBAL-H} \atop (2) \text{ H}_2\text{O}} R - C - H$$

**18.** (3)

$$(A) \qquad (B)$$

$$Trans$$

$$(Major) \qquad (Minor)$$



$$CH_2-Br \xrightarrow{(1)} \bigcirc CH_2-N \xrightarrow{(1)} CH_2-N \xrightarrow{(1)} CH_2-N \xrightarrow{(1)} CH_2-N \xrightarrow{(1)} CH_1-N \xrightarrow{(1)} CH_2-N \xrightarrow{(1)}$$

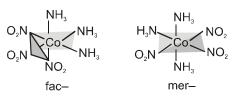
## **20.** (3)

$$\begin{array}{c} \text{CH}_3-\text{CH}_2-\text{CH}_2-\text{COO}-\text{CH}_2-\text{CH}_3 \xrightarrow{\text{LiAlH}_2} \text{CH}_3-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}+\text{C}_2\text{H}_5\text{OH} \\ \text{(A)} & \text{(B)} \\ & & \downarrow \text{Oxidation} \\ \text{CH}_3-\text{CH}_2-\text{CH}_2-\text{COOH} \end{array}$$

## **SECTION-II**

## 1. (2)

In  $[Co(NO_2)_3C(NH_3)_3]$  no. of G.I. = 2 = x



In  $[Cr(OX)_3]$  no. of G.I. = 0 = y (complex does not shows G.I.)

$$x + y = 2 + 0 = 2$$

#### 2. (16)

$$A(s) \, \Longleftrightarrow \, M(s) + \frac{1}{2} \, O_2(g)$$

$$K_p = P_{O_2}^{1/2}$$
 or  $P_{O_2} = K_p^2 = 4^2 = 16$ 

#### 3. (82)

$$H_2SO_4$$
 +  $2NaOH$   $\longrightarrow$   $Na_2SO_4$  +  $2H_2O$ 
 $Mole = \frac{0.2 \times 400}{1000}$   $Mole = \frac{0.1 \times 600}{1000}$  0.03 mole 0.06 mole
 $= 0.08$  = 0.06

Heat released =  $0.06 \times 57100 = 6 \times 571 \text{ J}$ 

$$q = mS\Delta T$$

$$6 \times 571 = 1000 \times 4.18 \times \Delta T$$

$$\Delta T = 81.9 \times 10^{-2} \text{ K}$$

#### 4. (6)

$$\longrightarrow$$
 3[Co(en)<sub>2</sub>Cl<sub>2</sub>]NO<sub>3</sub> + 3AgCl

Secondary valency of Co in [Co(en)<sub>2</sub>Cl<sub>2</sub>]Cl is 6.

#### **5.** (4)

PbS, CuS,  $As_2S_3$ , CdS are soluble in 50% HNO<sub>3</sub>. HgS,  $Sb_2S_3$  are insoluble in 50% HNO<sub>3</sub>

So Answer is 4.

#### **6.** (1)

Anions forms CCP or FCC  $(A^{-}) = 4 A^{-}$  per unit cell

Cations occupy all octahedral voids  $(B^+) = 4$  $B^+$  per unit cell

cell formula  $\rightarrow A_4B_4$ 

Empirical formula  $\rightarrow$  AB

$$\rightarrow$$
 (x = 1)

#### 7. (47)

$$\log k = \log A - \frac{E_a}{2.303RT}$$

Given log k = 
$$20.35 - \frac{2.47 \times 10^3}{T}$$

$$\frac{E_a}{2.303R} = 2.47 \times 10^3$$

$$E_a = \frac{2.47 \times 10^3 \times 2.303 \times 8.314}{1000} \text{ KJmol}^{-1}$$

= 47.29 KJ/mol

#### **8.** (0)

$$O_2^{2-} \Rightarrow K K \sigma_{2s}^2 \sigma_{2s}^{*2} \sigma_{2Pz}^2 \frac{\pi_{2Px}^2 \pi_{2Px}^{*2}}{\pi_{2Px}^2 \pi_{2Px}^{*2}}$$

## 9. (2)

Number of atoms = 
$$\frac{8}{23} \times 6.02 \times 10^{23} = 2.09$$





## **10.** (5)

Except Sn–NH<sub>4</sub>OH, all will reduce nitrobenzene into aniline.

## **PART: III MATHEMATICS**

#### **SECTION-I**

## 1. (3)

If, 
$$A + B = 45^{\circ}$$

$$tan(A + B) = 1$$

$$\Rightarrow \tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$\Rightarrow$$
 tan A + tan B = 1 - tan A tan B

$$\Rightarrow$$
 (1 + tan A) (1 + tan B) = 2

LHS 
$$[(1 + \tan 2^{\circ})(1 + \tan 43^{\circ})] \dots \tan 45^{\circ})$$

$$1 + \tan\left(\frac{\pi}{4} - \theta\right) = 2$$

$$1 + \tan\left(\frac{\pi}{4} - \theta\right) = 2$$

$$=2^{22}(1+1)$$

$$=2^{23}$$

$$=2^{\lambda}$$

then,  $\lambda = 23$ .

Hence the sum of digits of  $\lambda$  is 2 + 3 = 5

## 2. (1)

From given functional equation,

$$2f(xy) = (f(x))^{y} + (f(y))^{x}, \forall x, y \in R$$

putting y = 1, 
$$2f(x) = f(x) + (f(1))^x$$

$$2f(x) = f(x) + (f(1))^{x}$$

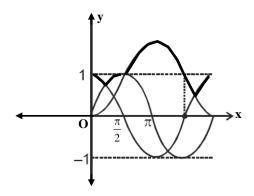
$$f(x) = 3^x$$

$$\sum_{r=1}^{10} f(r) = \sum_{r=1}^{10} 3^r = \frac{3(3^{10} - 1)}{3 - 1} = \frac{3}{2} (3^{10} - 1)$$

## **3.** (1)

The graph of  $f(x) = \max \{ \sin x, \cos x, 1 - \cos x \}$ 

is



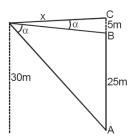
$$\Rightarrow$$
 f(x) is not differentiable at x =  $\frac{\pi}{4}$ ,  $\frac{\pi}{2}$ ,  $\frac{5\pi}{4}$ 

 $\Rightarrow$  f(x) is not differentiable at 3 points

## 4. (2)

We have 
$$\tan \alpha = \frac{5}{x}$$
 and  $\tan 2\alpha = \frac{30}{x}$ 

$$\therefore \tan 2\alpha = \frac{30}{5\cot \alpha} \Rightarrow \tan 2\alpha = 6\tan \alpha$$



Hence, 
$$x = \frac{5}{\tan \alpha} \Rightarrow x = 5\sqrt{\frac{3}{2}}m$$





**5.** (3)

Given expansion = 
$$(1 + {}^{m}C_{1}x + {}^{m}C_{2}x^{2} + ....)$$
  
 $(1 - {}^{n}C_{1}x + {}^{n}C_{2}x^{2} - .....)$ 

Coefficient of 
$$x^2 = -{}^{n}C_1 + {}^{m}C_1 = m - n = 3$$

Coefficient of 
$$x^2 = {}^{n}C_2 - {}^{m}C_1 {}^{m}C_1 + {}^{m}C_2 =$$

$$\frac{n(n-1)}{2} - mn + \frac{m(m-1)}{2}$$

$$\Rightarrow \frac{n(n-1)}{2} - mn + \frac{m(m-1)}{2} = -6$$

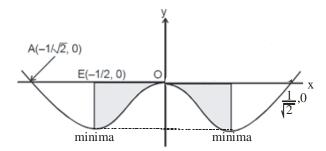
$$n = m - 3$$

$$\frac{(m-3)(m-4)}{2} + \frac{m(m-1)}{2} - m(m-3) = -6$$

$$\Rightarrow$$
  $-2m = -24 \Rightarrow m = 12$ 

**6.** (2)

The equation of the curve is



$$y = 2x^4 - x^2 = (2x^2 - 1)x^2$$

The curve is symmetrical about the y-axis.

Also, it is a polynomial of degree four having

roots 0, 0, 
$$\pm \frac{1}{\sqrt{2}}$$

x = 0 is repeated root. Hence, graph touches x - axis at (0, 0) and intersects the x-axis at

$$A\left(\frac{1}{\sqrt{2}},0\right) \& B\left(\frac{1}{\sqrt{2}},0\right)$$

$$\Rightarrow \frac{dy}{dx} = 8x^3 - 2x = 2x(4x^2 - 1) = 0$$

$$x = 0, x = \pm \frac{1}{2}$$

$$\left(\frac{d^2y}{dx^2}\right) > 0$$
 at  $x = \frac{1}{2}$  and at  $x = \frac{-1}{2}$ 

So  $x = \pm \frac{1}{3}$  are the points of local minima

Thus, the graph of the curve is shown in diagram.

Here,  $y \le 0$ , as x varies from  $x = -\frac{1}{2}$  to  $x = \frac{-1}{2}$ 

:. The required area

= 2 Area OCDO

$$= 2 \left| \int_{0}^{\frac{1}{2}} y dx \right| = \left| \int_{0}^{\frac{1}{2}} (2x^{4} - x^{2}) dx \right| = \frac{7}{120} \text{ sq.units}$$

**7.** (1)

Let, p: Two triangles are identical

q: Two triangles are similar

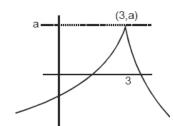
Clearly, the given statement in symbolic form

is 
$$p \rightarrow q$$
.

Contrapositive of  $p \rightarrow q$  is  $\sim q \rightarrow \sim p$ 

i.e., If two triangles are not similar, then they are not identical.

8. (3)

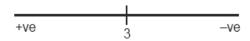


$$f(x) = a - (x - 3)^{8/9}$$

$$\therefore$$
 f'(x) = 0 -  $\frac{8}{9}$ (x - 3)<sup>-1/9</sup>

At x = 3, f'(x) is not defined.

hence sign scheme of f'(x) is



 $\therefore$  f(x) is maximum at x = 3

Hence maximum value of f(x) is equal to "a"



## 9. (2)

$$x + a(2y + 1) = 0$$

$$x + b(3y + 1) = 0$$

$$x + a(4y + 1) = 0$$

$$R_2 \rightarrow R_2 - R_1$$

$$R_3 \rightarrow R_3 - R_1$$

$$\begin{vmatrix} 1 & 2a & a \\ 0 & 3b-2a & b-a \\ 0 & 2a & a \end{vmatrix} - 0$$

$$\Rightarrow$$
 2a(b - a) = 0

$$2a = 0 \text{ or } b = a$$

Hence, locus of (a, b) is y = x or x = 0

## 10. (2)

Let 
$$y = \lim_{t \to 0} \frac{2x}{\pi} \cot^{-1} \frac{x}{t^2}$$

Case-I: when x > 0 then

$$y = \frac{2x}{\pi} \lim_{t \to 0} \cot^{-1} \frac{x}{t^2} = \frac{2x}{\pi} \times 0 = 0$$

Case-II: when x < 0 then

$$y = \frac{2x}{\pi} \lim_{t \to 0} \cot^{-1} \frac{x}{t^2} = \frac{2x}{\pi} \times \pi = 2x$$

$$f(x) = \begin{cases} \sin 0 & x > 0 \\ \sin 2x & x < 0 \end{cases}$$

Now, 
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(x) dx$$

$$= \int_{-\frac{\pi}{2}}^{0} \sin 2x dx + \int_{0}^{\frac{\pi}{2}} \cot x = -\left(\frac{\cos 2x}{2}\right)_{-\frac{\pi}{2}}^{0} = -\frac{1}{2}(1 - (-1)) = -1$$

#### 11. (4)

Given equation

$$4\left(x^2 + \frac{1}{x^2}\right) + 16\left(x + \frac{1}{x}\right) - 57 = 0$$

Let, 
$$x + \frac{1}{x} = y$$
;  $x^2 + \frac{1}{x^2} = y^2 - 2$ 

$$\Rightarrow 4y^2 + 16y - 65 = 0$$

$$\Rightarrow$$
 y =  $-\frac{13}{2}$  or  $\frac{5}{2}$ 

When, 
$$y = \frac{5}{2}$$

$$x + \frac{1}{x} = \frac{5}{2} \Rightarrow x = 2 \text{ or } \frac{1}{2}$$

When, 
$$y = -\frac{13}{2}$$

$$\Rightarrow x + \frac{1}{x} = -13/2$$

$$\Rightarrow 2x^2 + 13x + 2 = 0$$

Since x is rational, x = 2 or  $\frac{1}{2}$ 

#### **12.** (4)

Given,  $x Ry \Rightarrow x$  is relatively prime to y.

$$R = \{(2, 3), (2, 7), (3, 7), (3, 10), (4, 3), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7), (4, 7)$$

 $\therefore$  Domain of R = {2, 3, 4, 5}

#### 13. (1)

$$\frac{\sum x_i}{20} = 10 \qquad \dots (i)$$

$$\frac{\sum x_i}{20} - 100 = 4 \qquad ....(ii)$$

$$\sum x_i^2 = 104 \times 20 = 2080$$

Actual mean = 
$$\frac{200-9+11}{20} = \frac{202}{20}$$

Variance = 
$$\frac{2080 - 81 + 121}{20} = \left(\frac{202}{20}\right)^2$$

$$= \frac{2120}{20} - (10.1)^2 = 106 - 102.01 = 3.99$$



**14.** (3)

$$P(T_1) = \frac{20}{100}$$

$$P(T_2) = \frac{80}{100}$$

Let, 
$$P = \left(\frac{D}{T_2}\right) = x$$
 (where, D represents

defective units)

$$P = \left(\frac{D}{T_2}\right) = 10x$$

$$P(D) = \frac{7}{100}$$
 (given)

$$P(T_1)P\left(\frac{D}{T_1}\right) + P(T_2)P\left(\frac{D}{T_2}\right) = \frac{7}{100}$$

$$\frac{200}{100} \times 10x + \frac{80}{100} \times x = \frac{7}{100}$$

$$x = \frac{1}{40}$$

$$P\left(\frac{D}{T_2}\right) = \frac{1}{40}$$

$$\Rightarrow$$
  $P\left(\frac{D}{T_2}\right) = \frac{39}{40}$  = Probability of not

defective, given that it is produced in plant T<sub>2</sub>

$$P\left(\frac{D}{T_1}\right) = \frac{10}{40} \Rightarrow P\left(\frac{\overline{D}}{T_1}\right) = \frac{30}{40}$$

Now using Bayes' theorem

Probability of computer from  $T_2$  given that it is not defective:

$$P\left(\frac{T_2}{D}\right) = \frac{\frac{80}{100} \times \frac{39}{40}}{\frac{20}{100} \times \frac{30}{40} + \frac{80}{100} \times \frac{39}{40}} = \frac{78}{93}$$

**15.** (3)

Given,

$$|\vec{a}| = 1, |\vec{b}| = 2, |\vec{c}| = 3$$
 and  $\vec{a}.\vec{b} = 0 = \vec{b}.\vec{c} = \vec{c}.\vec{a}$ 

(as the three vectors are mutually perpendicular) So,

$$\begin{aligned} & \left[ \left( \vec{a} + \vec{b} + \vec{c} \right) \times \left( \vec{b} - \vec{a} \right) \right] . \vec{c} = \left[ \vec{a} \times \vec{b} - 0 + 0 - \vec{b} \times \vec{a} + \vec{c} \times \vec{b} - \vec{c} x \rightarrow \right] . \vec{c} \\ & = \left[ 2 \left( \vec{a} \times \vec{b} \right) . \vec{c} + (\vec{c} \times \vec{b}) . \vec{c} - (\vec{c} \times \vec{a}) . \vec{c} \right] \\ & = 2 \left( \vec{a} \times \vec{b} \right) . \vec{c} + 0 - 0 = 2 \left[ \vec{a} \vec{b} \vec{c} \right] = 2.1.2.3 = 12 \end{aligned}$$

**16.** (2)

Let 
$$2x + y = t \Rightarrow \frac{dy}{dx} + 2 = \frac{dt}{dx}$$

$$\frac{dt}{dx} + xt = x^3t^3 \implies \frac{1}{t^3}\frac{dt}{dx} + \frac{1}{t^2}x = x^3$$

Let, 
$$\frac{1}{t^2} = u \Rightarrow \frac{-2}{t^3} \frac{dt}{dx} = \frac{du}{dx}$$

$$\frac{du}{dx} + (-2x)u = -2x^3$$

I.F. = 
$$e^{-\int 2x dx} = e^{-x^2} \Rightarrow u.e^{-x^2} = \int e^{-x^2} (-2x^3) dx$$

$$\frac{e^{-x^2}}{(2x+v)^2} = -2\int e^{-x^2}.x^3 dx$$

$$\frac{e^{-x^2}}{(2x+y)^2} = \int e^{-x^2} \cdot x^2 (-2x) dx$$

Let, 
$$-x^2 = v$$

$$-2xdx = dv \Rightarrow \frac{e^{-x^2}}{(2x+v)^2} = -\int e^v v dv$$

$$\frac{e^{-x^2}}{(2x+y)^2} + v.e^v - e^v = C \implies$$

$$\frac{e^{-x^2}}{(2x+y)^2} - x^2 e^{-x^2} - e^{-x^2} = C$$

$$\frac{1}{(2x+y)^2} = (x^2+1) + Ce^{x^2}$$



$$\begin{vmatrix} x-4 & 2x & 2x \\ 2x & x-4 & 2x \\ 2x & 2x & x-4 \end{vmatrix}$$

$$= (A + Bx) (x - A)^2$$

Put 
$$x = 0 \Rightarrow \begin{vmatrix} -4 & 0 & 0 \\ 0 & -4 & 0 \\ 0 & 0 & -4 \end{vmatrix} = A^3 \Rightarrow A = -4$$

$$\begin{vmatrix} x-4 & 2x & 2x \\ 2x & x-4 & 2x \\ 2x & 2x & x-4 \end{vmatrix}$$

$$= (Bx - 4) (x + 4)^2$$

$$\begin{vmatrix} 1 - \frac{4}{x} & 2 & 2 \\ 2 & 1 - \frac{4}{x} & 2 \\ 2 & 2 & 1 - \frac{4}{x} \end{vmatrix}$$

$$= \left(B - \frac{4}{x}\right) \left(1 + \frac{4}{x}\right)^2$$

Put 
$$x \to \infty \Rightarrow \begin{vmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{vmatrix} = B \Rightarrow B = 5$$

## **18.** (4)

Two given lines intersect, if

$$7\hat{i} + 10\hat{j} + 13\hat{k} + 5(2\hat{i} + 3\hat{j} + 4\hat{k})$$

$$= 3\hat{i} + 5\hat{j} + 7\hat{k} + t(\hat{i} + 2\hat{j} + 3\hat{k})$$

$$\Rightarrow (7+2s)\hat{i} + (10+3s)\hat{j} + (13+4s)\hat{k}$$

$$= (3+t)\hat{i} + (5+2t)\hat{i} + (7+3t)\hat{k}$$

$$\Rightarrow$$
 7 + 2s = 3 + t

$$\Rightarrow$$
 2s - t = -4 .....(i)

$$10 + 3s = 5 + 2t$$

$$\Rightarrow$$
 3s - 2t = -5 .....(ii)

And 
$$13 + 4s = 7 + 3t$$

$$\Rightarrow$$
 4s - 3t = -6 .....(iii)

On solving equation (i) and (iii), we get equation

$$s = -3, t = -2$$

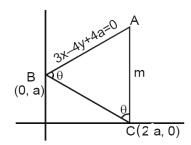
:. Required point is

$$7\hat{i} + 10\hat{j} + 13\hat{k} \left[ 2\hat{i} + 3\hat{j} + 4\hat{k} \right]$$

$$\hat{i} + \hat{j} + \hat{k}$$

## **19.** (3)

Let,  $\angle ABC = \angle ACB = \theta$  and slope of AC = m



Slope of BC = 
$$-\frac{1}{2}$$

Slope of AB = 
$$\frac{3}{4}$$

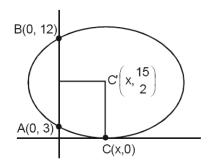
Now,  $tan (\angle ABC) = tan (\angle ACB)$ 

$$\Rightarrow \frac{\frac{3}{4} - \left(-\frac{1}{2}\right)}{1 + \left(\frac{3}{4}\right)\left(-\frac{1}{2}\right)} = \frac{-\frac{1}{2} - m}{1 + \left(-\frac{1}{2}m\right)}$$

$$\Rightarrow 2 = \frac{-\frac{1}{2} - m}{1 - \frac{m}{2}} \Rightarrow 2 - m = -\frac{1}{2} - m$$

 $\Rightarrow$  m = not defined

 $\Rightarrow$  equation of AC is x = 2a



$$OA \times OB = OC^2 \Rightarrow 3 \times 12 = x^2 \Rightarrow x = 6$$

Centre (C') = 
$$\left(6, \frac{15}{2}\right)$$
,  $\angle AC'B = 2\angle ACB = 2\theta$ 

$$\Rightarrow \cos 2\theta = \frac{\left(\frac{15}{2}\right)^2 + \left(\frac{15}{2}\right)^2 - 9^2}{2 \times \frac{15}{2} \times \frac{15}{2}}$$

$$=\frac{\frac{225}{2}-81}{\frac{225}{2}}=\frac{225-162}{225}=\frac{63}{225}=\frac{7}{25}$$

## **SECTION-II**

#### 1. (12)

$$a^2 + b^2 = 50$$

$$a = 1 \Rightarrow b^2 = 49$$

$$\Rightarrow$$
 b =  $\pm 7$ 

a = 2,3,4,6 do not give integer value of b.

$$a = 5 \Rightarrow b^2 = 25 \Rightarrow b = \pm 5$$

$$a = 7 \Rightarrow b^2 = 1$$

$$\Rightarrow$$
 b =  $\pm 1$ 

Similarly,

$$a = -1 \Rightarrow b = \pm 7$$

$$a = -5 \implies b = \pm 5$$

$$a = -7 \Rightarrow b = \pm 1$$

 $\Rightarrow$  The required number of elements (a, b) = 12

## 2. (16)

$$x^2 - ky + 32 = 0$$

$$\Rightarrow x^2 = k \left( y - \frac{32}{k} \right)$$

Put, 
$$x = X$$
,  $y - \frac{32}{k} = Y$ 

The equation of directrix is  $Y + \frac{k}{4} - 0$ 

i.e. 
$$y - \frac{32}{k} + \frac{k}{4} = 0$$

But, y - 2 = 0 is the directrix.

$$\Rightarrow \frac{32}{k} - \frac{k}{4} - 2$$

$$\Rightarrow k^2 + 8k - 128 = 0$$

$$\Rightarrow$$
 k = -16 or k = 8

For k = 8, the parabola is  $x^2 = 8(y - 4)$  which does not intersect the circle.

For k = -16, the parabola is  $x^2 = -16(y + 2)$  which intersects the circle at two real distinct points.

 $\Rightarrow$  Absolute value of k = |-16| = 16

13



## **3.** (1)

$$|z_1| = |z_2| = |z_3| = 1$$
 (given)

Now 
$$|z_1| = 1 \implies |z_1|^2 = 1$$

$$\Rightarrow z_1 \overline{z_1} = 1 \Rightarrow \frac{1}{z_1} = \overline{z_1}$$

Similarly, 
$$\frac{1}{z_2} = \overline{z_2} \& \frac{1}{z_3} = \overline{z_3}$$

Now 
$$\left| \frac{1}{Z_1} + \frac{1}{Z_2} + \frac{1}{Z_3} \right| = 1$$

$$\Rightarrow \left| \overline{Z_1 + Z_2 + Z_3} \right| = 1 \ (\therefore \overline{Z_1} + \overline{Z_2} = \overline{Z_1 + Z_2})$$
 and

$$\left|\overline{Z_1 + Z_2 + Z_3}\right| = 1 \left( \therefore \left|\overline{Z_1}\right| = |Z| \right)$$

$$\Rightarrow \left| \overline{Z_1 + Z_2 + Z_3} \right| = 1$$

## 4. (37)

Let 
$$x = u^6$$
,  $dx = 6u^5 du$ 

$$\int \frac{dx}{\sqrt{x} + \sqrt[3]{x}} = \int \frac{6u^2 du}{u^3 + u^2} = 6 \int \frac{u^3}{u + 1} du = 6$$

$$\int \left( u^2 - u + 1 - \frac{1}{u+1} \right) du$$

$$=2u^3-3u^2+6u-6\ln(u+1)+e$$

$$\therefore$$
 a = 2, b = -3, c = 6, d = -6

$$\therefore 20a + b + c + d = 37$$

## **5.** (0.5)

$$y = tan^{-1} (secx - tanx)$$

$$y = \tan^{-1} \left( \frac{1 - \sin x}{\cos x} \right)$$

$$\Rightarrow y = \tan^{-1} \left( \frac{\left( \cos \frac{x}{2} - \sin \frac{x}{2} \right)^2}{\left( \cos^2 \frac{x}{2} - \sin^2 \frac{x}{2} \right)} \right)$$

$$\Rightarrow y = \tan^{-1} \left( \frac{\cos \frac{x}{2} - \sin \frac{x}{2}}{\cos \frac{x}{2} + \sin \frac{x}{2}} \right)$$

$$\Rightarrow y = \tan^{-1} \left( \frac{1 - \tan \frac{x}{2}}{1 + \tan \frac{x}{2}} \right)$$

$$\Rightarrow$$
 y = tan<sup>-1</sup>  $\left( tan \left( \frac{\pi}{4} - \frac{x}{2} \right) \right)$ 

$$\Rightarrow y = \frac{\pi}{4} - \frac{x}{2}$$

Differentiating with respect to x, we get

$$\Rightarrow \frac{dy}{dx} = \frac{-1}{2} = 0.5$$



## **6.** (**6**)

Let, x be the length of an edge, V be the volume and S be the surface area of the cube.

$$\frac{dv}{dt} = 18, V = x^3 \Longrightarrow \frac{dV}{dt} = 18 = 3x^2 \frac{dx}{dt}$$

$$\Rightarrow \frac{dx}{dt} = \frac{6}{x^2}$$
 ....(i)

$$S = 6x^2$$

$$\Rightarrow \frac{dS}{dt} = 12x \frac{dx}{dt}$$
 ....[From (i)]

$$\Rightarrow \frac{dS}{dt} = 12x \frac{6}{x^2}$$

$$\Rightarrow \frac{dS}{dt} = 12 \times \frac{6}{x} = 6$$
 [:: Given x = 12]

$$\therefore \frac{dS}{dt} = 6cm^2 / sec$$

## 7. (5)

Method I

We evaluate  $A^2$  and  $A^3$  and write the given

equation as 
$$AA^{-1} = I = \frac{1}{6} [A^3 + cA^2 + dA]$$

Comparing the corresponding elements on

both the sides, we get c = -6, d = 11

Method II

$$|\mathbf{A} - \mathbf{x}\mathbf{I}| = 0 = \begin{vmatrix} 1 - \mathbf{x} & 0 & 0 \\ 0 & 1 - \mathbf{x} & 1 \\ 0 & -2 & 4 - \mathbf{x} \end{vmatrix} = 0$$

$$\Rightarrow$$
 (1 - x) [(1 - x) (4 - x) + 2] = 0

Hence characteristic equation is

$$x^3 - 6x^2 + 11x - 6 = 0$$

Then by Caley Hamilton theorem

$$A^3 - 6A^2 + 11A - 6I = 0$$

multiply by A-1 both the sides,

we get 
$$\frac{1}{6}(A^2 - 6A + 11I) = A^{-1}$$
....(i)

given 
$$A^{-1} = \frac{1}{6} (A^2 + cA + d) \dots (ii)$$

then from equation (i) and (ii)

we get 
$$c = -6 d = 11$$

then 
$$c + d = 5$$

## **8.** (1)

: Angles A, B, C are in arithmetic progression

and 
$$\angle B = \frac{\pi}{4}$$

then 
$$A = \frac{\pi}{4} - \theta$$
  $C = \frac{\pi}{4} + \theta$ 

Hence 
$$\tan\left(\frac{\pi}{4} - \theta\right) \tan\frac{\pi}{4} \tan\left(\frac{\pi}{4} + \theta\right)$$

$$= \frac{1 - \tan \theta}{1 + \tan \theta} \cdot 1 \cdot \frac{1 + \tan \theta}{1 - \tan \theta} = 1$$





9. (5.85)

Continuity at 
$$x = 2 \Rightarrow p(2) + q = 2^2 - 5(2) + 6$$

$$\Rightarrow$$
 q =  $-2p$ 

Continuity at

$$x = 3 \Rightarrow a(9) + b(3) + 1 = 0$$

Differentiable at

$$x = 2 \Rightarrow p = 2 (2) - 5 \Rightarrow p = -1$$

Differentiable at x = 3

$$\Rightarrow$$
 2a (3) + b = 2(3) - 5  $\Rightarrow$  6a + b = 1

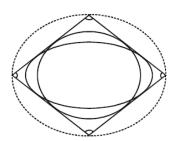
$$p = -1$$
,  $q = 2$ ,  $a = \frac{4}{9}$ ,  $b = -\frac{5}{3}$ 

$$|\mathbf{p}| + |\mathbf{q}| + \left|\frac{1}{\mathbf{a}}\right| + \left|\frac{1}{\mathbf{b}}\right| = 1 + 2 + \frac{9}{4} + \frac{3}{5}$$

10. (10)

Director circle of 
$$x^2 + y^2 = r^2$$
 and  $\frac{x^2}{16} + \frac{y^2}{9} = 1$ 

is same



$$\Rightarrow$$
  $x^2 + y^2 = 2r^2 & x^2 + y^2 = 16 + 9$  represents  
same circle

$$\Rightarrow 2r^2 = 25 \Rightarrow r = \frac{5}{\sqrt{2}}$$

side of square =  $2r = 5\sqrt{2}$ 

diagonal of square = 
$$\sqrt{2}$$
 (side of square)  
=  $\sqrt{2}$  (5  $\sqrt{2}$  ) = 10

