Reliable INSTITUTE Unleashing Potential

JEE ADVANCED 2024

PAPER - 2

QUESTIONS & SOLUTIONS

26 MAY, 2024

© 02:30 PM to 05:30 PM

Duration: 3 Hours

SUBJECT - CHEMISTRY

LEAGUE OF TOPPERS (Since 2020)

TOP 100 AIRS IN JEE ADVANCED

ANKAN SARKAR Rol No. : 20771420 JEE Adv. 2021

Admission Announcement for **JEE Advanced** (For Session 2024-25) VIKAAS For Class X to XI Moving Students

TARGET 2026

Starting From: 29 MAY'24

VIJAY **For Class XII**

Passed Students **TARGET 2025**

Starting From: 29 MAY & 12 JUNE'24

Avail Scholarship up to 90% through R-NET on EVERY SUNDAY

Reliable Institute: A-10, Road No.1, IPIA, Kota-324005 (Rajasthan), India
Tel.: 0744-3535544, 2665544 I Website: www.reliablekota.com I E-mail: info@reliablekota.com

CHEMISTRY

SECTION 1 (Maximum Marks: 12)

- This section contains **FOUR (04)** questions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONLY ONE** of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks: +3 If **ONLY** the correct option is chosen;

Zero Marks: 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks: -1 In all other cases.

- 1. According to Bohr's model, the highest kinetic energy is associated with the electron in the
 - (A) first orbit of H atom

(B) first orbit of He⁺

(C) second orbit of He⁺

(D) second orbit of Li²⁺

Ans. (B)

Sol. K.E. = -T.E.

K.E. =
$$+13.6 \frac{Z^2}{n^2}$$
 eV/atom

(A) (K.E.)_H =
$$13.6 \frac{1}{1} = 13.6 \text{ eV/atom}$$

(B) (K.E.)_{He⁺} =
$$13.6 \times \frac{(2)^2}{1} = 54.4 \text{ eV/atom}$$

(C) (K.E.)_{He⁺} = 13.6 ×
$$\frac{(2)^2}{(2)^2}$$
 = 13.6 eV/atom

(D) (K.E.)_{Li²⁺} = 13.6×
$$\frac{(3)^2}{(2)^2}$$
 = 30.6 eV/atom

- In a metal deficient oxide sample, $M_XY_2O_4$ (M and Y are metals), M is present in both +2 and +3 oxidation states and Y is in +3 oxidation state. If the fraction of M^{2+} ions present in M is 1/3, the value of X is _____.
 - (A) 0.25
- (B) 0.33
- (C) 0.67
- (D) 0.75

Ans. (D)

Sol. Metal deficient oxide sample $M_XY_2O_4$ apply charge balancing

$$\left(2 \times \frac{1}{3} + 3 \times \frac{2}{3}\right) X + 6 - 8 = 0$$

$$\left(\frac{2}{3} + 2\right)X = 2$$

$$\left(X = \frac{3}{4}\right)$$

Ans. 0.75

Correct answer (D)

3. In the following reaction sequence, the major product \mathbf{Q} is

$$L - Glu cos \, e \xrightarrow[ii)Cr_2O_3,775K,10-20atm]{i)HI,\Delta} P \xrightarrow[UV]{Cl_2(excess)} Q$$

$$(A) \xrightarrow{Cl} \xrightarrow{Cl} Cl$$

$$(D) \xrightarrow{Cl} \xrightarrow{Cl} Cl$$

Ans. (D)

Sol. L-Glucose
$$HI,\Delta$$
Reduction n-hexane Cr_2O_3
 775 K
 $10-20 \text{ atm}$
(Aromatisation)

4. The species formed on fluorination of phosphorus pentachloride in a polar organic solvent are

- (A) $[PF_4]^+[PF_6]^-$ and $[PCl_4]^+[PF_6]^-$
- (B) $[PCl_4]^+[PCl_4F_2]^-$ and $[PCl_4]^+[PF_6]^-$

(C) PF₃ and PCl₃

(D) PF₅ and PCl₃

Ans. (B)

Sol. $PCl_5 \xrightarrow{Fluorination in polar \ organic solvent} [PCl_4]^+ [PCl_4F_2]^-$

and $[PCl_4]^+[PF_6]^-$

colourless crystal

White crystal

SECTION 2 (Maximum Marks: 12)

- This section contains **THREE** (03) questions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONE OR MORE THAN ONE** of these four option(s) is (are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks: +4 ONLY if (all) the correct option(s) is(are) chosen;

Partial Marks: +3 If all the four options are correct but **ONLY** three options are chosen; If three or more options are correct but **ONLY** two options are chosen,

both of which are correct;

Partial Marks: +1 If two or more options are correct but **ONLY** one option is chosen and it is

a correct option;

Zero Marks: 0 If unanswered; Negative Marks: -2 In all other cases.

• For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then

choosing ONLY (A), (B) and (D) will get +4 marks;

choosing ONLY (A) and (B) will get +2 marks;

choosing ONLY (A) and (D) will get +2marks;

choosing ONLY (B) and (D) will get +2 marks;

choosing ONLY (A) will get +1 mark;

choosing ONLY (B) will get +1 mark;

choosing ONLY (D) will get +1 mark;

choosing no option(s) (i.e. the question is unanswered) will get 0 marks and

choosing any other option(s) will get -2 marks.

5. A n aqueous solution of hydrazine (N_2H_4) is electrochemically oxidized by O_2 , there by releasing chemical energy in the form of electrical energy. One of the products generated from the electrochemical reaction is $N_2(g)$.

Choose the correct statement(s) about the above process

- (A) OH^- ions react with N_2H_4 at the anode to form $N_2(g)$ and water, releasing 4 electrons to the anode.
- (B) At the cathode, N₂H₄ breaks to N₂(g) and nascent hydrogen released at the electrode reacts with oxygen to form water.
- (C) At the cathode, molecular oxygen gets converted to OH.
- (D) Oxides of nitrogen are major by-products of the electrochemical process.

Ans. (AC)

Sol.

Anode: $N_2H_4 + 4OH^- \longrightarrow N_2 + 4H_2O + 4e^-$

Cathode: $O_2 + 2H_2O + 4e^- \longrightarrow 4OH^ E^{\circ} = 1.23$

 $N_2H_4 + O_2 \Longrightarrow N_2 + 2H_2O$

There is no contact between N₂H₄ and O₂. During cell operation therefore product of oxides are very less.

НО

6. The option(s) with correct sequence of reagents for the conversion of P to Q is (are)

- (A) i) Lindlar's catalyst, H₂; ii) SnCl₂/HCl; iii) NaBH₄; iv) H₃O⁺
- (B) i) Lindlar's catalyst, H₂ ; ii) H₃O⁺; iii) SnCl₂/HCl ; iv) NaBH₄
- (C) i) NaBH₄; ii) SnCl₂/HCl; iii) H₃O⁺;iv) Lindlar's catalyst, H₂
- (D) i) Lindlar's catalyst, H₂ ii) NaBH₄; iii) SnCl₂/HCl; iv) H₃O⁺;

Ans. (CD)

(i) Lindlar's catalyst
$$H_2$$
 CO_2Et H_3C H_3C H_3C H_3C CO_2Et CO_2ET

- The compound(s) having peroxide linkage is(are) 7.
 - $(A) H_2S_2O_7$
- (B) $H_2S_2O_8$
- $(C) H_2S_2O_5$
- (D) H_2SO_5

(BD) Ans.

SECTION 3 (Maximum Marks: 24)

- This section contains **SIX (06)** questions.
- The answer to each question is a **NON-NEGATIVE INTEGER**.
- For each question, enter the correct integer corresponding to the answer using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks: +4 If **ONLY** the correct integer is entered;

Zero Marks: 0 In all other cases.

8. To form a complete monolayer of acetic acid on 1g of charcoal, 100 mL of 0.5 M acetic acid was used. Some of the acetic acid remained unadsorbed. To neutralize the unadsorbed acetic acid, 40 mL of 1 M NaOH solution was required. If each molecule of acetic acid occupies $P \times 10^{-23}$ m² surface area on charcoal, the value of P is _____.

[Use given data: Surface area of charcoal = $1.5 \times 10^2 \text{ m}^2\text{g}^{-1}$]

Avogadro's number (NA) = $6.0 \times 10^{23} \text{ mol}^{-1}$]

Ans. 2500

Sol. Total milimoles of $CH_3COOH = 50$

 $CH_3COOH + NaOH \longrightarrow CH_3COONa + H_2O$

Unadsorbed 40 m moles

m moles of CH_3COOH adsorbed = 10

Total molecules of CH₃COOH adsorbed

$$= 6 \times 10^{23} \times 10 \times 10^{-3}$$
$$= 6 \times 10^{21}$$

 6×10^{21} molecules occupies $1.5\times10^2~\text{m}^2$

1 molecule occupies =
$$\frac{1.5 \times 10^2}{6 \times 10^{21}}$$

= $\frac{15}{60} \times 10^{-19} = 0.25 \times 10^{-19}$
= 25×10^{-21}
= 2500×10^{-23}
= 2500

9. Vessel-1 contains $\mathbf{w_2} \mathbf{g}$ of a non – volatile solute \mathbf{X} dissolved in $\mathbf{w_1} \mathbf{g}$ of water. vessel-2 contains $\mathbf{w_2} \mathbf{g}$ of another non – volatile solute \mathbf{Y} dissolved in $\mathbf{w_1} \mathbf{g}$ of water. Both the vessel are at the same temperature and pressure. The molar mass of \mathbf{X} is 80% of that of \mathbf{Y} . The van't Hoff factor for \mathbf{X} is 1.2 times of that of \mathbf{Y} for their respective concentrations.

The elevation of boiling point for solution in Vessel -1 is _____ % of the solution in Vessel-2

Vessel-2

Weight of water = W_1

Non-volatile solute $(Y) = W_2$ g

Ans. 150

Sol. Vessel-1

Non-volatile solute $(X) = W_2$

Weight of water = W_1

$$M_X = 0.8 M_Y$$

$$i_{\rm X} = 1.2 i_{\rm Y}$$

$$\frac{\left(\Delta T_{_b}\right)_{_{Vessel-1}}}{\left(\Delta T_{_b}\right)_{_{Vessel-2}}} = \frac{i_{_X}K_{_b} \times \frac{W_2}{M_{_X}} \times \frac{1000}{W_{_l}}}{i_{_Y}K_{_b} \times \frac{W_2}{M_{_Y}} \times \frac{1000}{W_{_l}}}$$

$$= \frac{1.2i_{Y}}{i_{Y}} \times \frac{M_{Y}}{0.8M_{Y}} = \frac{1.2}{0.8} = \frac{3}{2} = 1.5$$

Ans.
$$= 1.5 \times 100 = 150$$

10. For a double strand DNA, one strand is given below:

The amount of energy required to split the double strand DNA into two single strands is _____ kcalmol⁻¹.

[Given: Average energy per H-bond for A-T base pair = $1.0 \text{ kcal mol}^{-1}$, G-C base pair = $1.5 \text{ kcal mol}^{-1}$, and A-U base pair = $1.25 \text{ kcal mol}^{-1}$. Ignore electrostatic repulsion between the phosphate groups.]

Ans. 41

Sol. In DNA number of H-bonds between Adenine & Thymine = 2, Guanine & Cytosine = 3

No. of (A=T) H-bonds broken to split the double strand DNA into two single strands. = 7 No. of (G \equiv C) H-bonds broken to split the double strand DNA into two single strands. = 6 Total amount of energy required = $7 \times 2 \times 1 + 6 \times 3 \times 1.5$

$$= 14 + 27 = 41 \text{ K.Cal/mol}$$

11. A sample initially contains only U-238 isotope of uranium. With time, some of the U-238 radioactively decays into Pb-206 while the rest of it remains undisintegrated.

When the age of the sample is $P \times 10^8$ years, the ratio of mass of Pb-206 to that of U-238 in the sample is found to be 7. The value of P is _____.

[Given: Half-life of U-238 is 4.5×10^9 years; $\log_e 2 = 0.693$]

Ans. 143.5 (Range 142 –144)

Sol.
$$U^{238} \longrightarrow Pb^{206}$$

According to question

$$\frac{W_{Pb}}{W_{Uranium}} = 7$$

$$(n_{Uranium})_{Sample} = \frac{x}{238}$$

$$(n_{Pb})_{Sample} = \frac{7x}{206}$$

Initial moles of
$$U^{238} = \frac{x}{238} + \frac{7x}{206}$$

$$t = \frac{1}{\lambda} \ln \frac{n_0}{n}$$

$$t = \frac{4.5 \times 10^9}{\ln 2} \ln \frac{\frac{x}{238} + \frac{7x}{206}}{\frac{x}{238}}$$

$$t = \frac{4.5 \times 10^9}{\ln 2} \times \ln 9$$

$$t = \frac{4.5 \times 10^9}{0.3010} \times 2 \times 0.48$$

$$= 14.35 \times 10^9 = 143.5 \times 10^8$$

Ans. 143.5 (Range 142 –144)

Among $[Co(CN)_4]^{4-}$, $[Co(CO)_3(NO)]$, XeF_4 , $[PCl_4]^+$, $[PdCl_4]^{2-}$, $[ICl_4]^-$, $[Cu(CN)_4]^{3-}$ and P_4 the total number of species with tetrahedral geometry is _____.

Ans. (5)

Sol.
$$[Co(CN)_4]^{4-}$$
 \longrightarrow Tetrahedral

$$[Co(CO)_3(NO)] \longrightarrow Tetrahedral$$

$$XeF_4 \longrightarrow Square planar$$

$$PCl_4^{+1} \longrightarrow Tetrahedral$$

$$[PdCl_4]^{2-}$$
 — Square planar

$$ICl_4^-$$
 — Square planar

$$[Cu(CN)_4]^{3-}$$
 — Tetrahedral

$$P_4 \longrightarrow Tetrahedral$$

13. An organic compound **P** having molecular formula C₆H₆O₃ gives ferric chloride test and does not have intramolecular hydrogen bond. The compound P reacts with 3 equivalents of NH₂OH to produce oxime **Q**. Treatment of **P** with excess methyl iodide in the presence of KOH produces compound **R** as the major product. Reaction of **R** with excess iso-butylmagnesium bromide followed by treatment with H₃O⁺ gives compound **S** as the major product.

The total number of methyl ($-CH_3$) group(s) in compound S is _____.

Ans. 6

SECTION 4 (Maximum Marks: 12)

- This section contains **TWO (02)** paragraphs.
- Based on each paragraph, there are TWO (02) questions.
- The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value of the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
- If the numerical value has more than two decimal places, truncate/round-off the value to TWO decimal places.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks: +3 If **ONLY** the correct numerical value is entered in the designated

place;

Zero Marks: 0 In all other cases.

"PARAGRAPH I"

An organic compound P with molecular formula $C_9H_{18}O_2$ decolorizes bromine water and also shows positive iodoform test. P on ozonolysis followed by treatment with H_2O_2 gives Q and R. While compound Q shows positive iodoform test, compound Q does not give positive iodoform test. Q and Q on oxidation with pyridinium chlorochromate (PCC) followed by heating give Q and Q and Q and Q shows positive iodoform test.

Complete copolymerization of 500 moles of **Q** and 500 moles of **R** gives one mole of a single acyclic copolymer **U**.

[Given, atomic mass: H = 1, C = 12, O = 16]

- **14.** Sum of number of oxygen atoms in S and T is _____.
- Ans. 2
- **Sol.** Compound $P(C_9H_{18}O_2)$ has one C=C and two OH groups.

$$P \xrightarrow{O_3} \xrightarrow{H_2O_2} Q + R$$
 (Q shows iodoform test but R does not)

$$Q \xrightarrow{PCC} \xrightarrow{\Delta} S$$

 $R \xrightarrow{PCC} \xrightarrow{\Delta} T$ (Both S & T show iodoform test)

OH OH
$$(i) O_3$$
 OH $(ii) H_2O_2$ OH (O) (R) $(C_9H_{18}O_2)$ Gives +ve iodoform Gives -ve iodoform $(C_9H_{18}O_2)$ $(C_$

Sum of number of O-atoms in S and T = 1 + 1 = 2

15. The molecular weight of U is _____.

Ans. 93018

Number of moles of monomer units of Q and R in one mole of polymer U = 500 moles each Mass of the polymer U = mass of 500 moles of (monomer Q + monomer R) – mass of 999 moles of $H_2O = (104 \times 500 + 118 \times 500) - 999 \times 18 = 93018$ g

"PARAGRAPH II"

When potassium iodide is added to an aqueous solution of potassium ferricyanide, a reversible reaction is observed in which a complex **P** is formed. In a strong acidic medium, the equilibrium shifts completely towards **P**. Addition of zinc chloride to **P** in a slightly acidic medium results in a sparingly soluble complex **Q**.

16. The number of moles of potassium iodide required to produce two moles of **P** is ...

Ans. (2)

Sol.
$$2K_3[Fe(CN)_6] + 2KI \longrightarrow 2K_4[Fe(CN)_6] + I_2$$
(P)

Number of moles of potassium iodide required to produce two moles of P is 2.

17. The number of zinc ions present in the molecular formula of Q is .

Ans. (3)

Sol.
$$3Zn^{2+} + 2K_4[Fe(CN)_6] \longrightarrow K_2Zn_3[Fe(CN)_6]_2 + 6K^+$$
(Excess)