JEE ADVANCED 2024

SUBJECT - CHEMISTRY

CHEMISTRY

SECTION 1 (Maximum Marks: 12)

- This section contains FOUR (04) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks: +3
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);
Negative Marks : -1 In all other cases.

1. According to Bohr's model, the highest kinetic energy is associated with the electron in the
(A) first orbit of H atom
(B) first orbit of He^{+}
(C) second orbit of He^{+}
(D) second orbit of Li^{2+}

Ans. (B)
Sol. K.E. $=-$ T.E.
K.E. $=+13.6 \frac{\mathrm{Z}^{2}}{\mathrm{n}^{2}} \mathrm{eV} /$ atom
(A) $(\text { K.E. })_{H}=13.6 \frac{1}{1}=13.6 \mathrm{eV} /$ atom
(B) (K.E.) $\mathrm{He}^{+}=13.6 \times \frac{(2)^{2}}{1}=54.4 \mathrm{eV} /$ atom
(C) (K.E. $)_{\mathrm{He}^{+}}=13.6 \times \frac{(2)^{2}}{(2)^{2}}=13.6 \mathrm{eV} /$ atom
(D) (K.E. $)_{\mathrm{Li}^{2+}}=13.6 \times \frac{(3)^{2}}{(2)^{2}}=30.6 \mathrm{eV} /$ atom
2. In a metal deficient oxide sample, $\mathrm{M}_{\mathrm{X}} \mathrm{Y}_{2} \mathrm{O}_{4}$ (M and Y are metals), M is present in both +2 and +3 oxidation states and Y is in +3 oxidation state. If the fraction of M^{2+} ions present in M is $1 / 3$, the value of X is \qquad .
(A) 0.25
(B) 0.33
(C) 0.67
(D) 0.75

Ans. (D)
Sol. Metal deficient oxide sample $\mathrm{M}_{\mathrm{X}} \mathrm{Y}_{2} \mathrm{O}_{4}$ apply charge balancing
$\left(2 \times \frac{1}{3}+3 \times \frac{2}{3}\right) \mathrm{X}+6-8=0$
$\left(\frac{2}{3}+2\right) \mathrm{X}=2$
$\left(\mathrm{X}=\frac{3}{4}\right)$
Ans. 0.75
Correct answer (D)
3. In the following reaction sequence, the major product \mathbf{Q} is
$\mathrm{L}-\mathrm{Glu} \cos \mathrm{e} \xrightarrow[\text { ii) } \mathrm{Cr}_{2} \mathrm{O}_{3}, 775 \mathrm{~K}, 10-20 \mathrm{~atm}]{\mathrm{i}) \mathrm{HI}, \Delta} \mathrm{P} \xrightarrow[\mathrm{UV}]{\mathrm{Cl}_{2} \text { (excess) }} \mathrm{Q}$
(A)

(B)

(C)

(D)

Ans. (D)
Sol.

4. $\quad \mathrm{T}$ he species formed on fluorination of phosphorus pentachloride in a polar organic solvent are
(A) $\left[\mathrm{PF}_{4}\right]^{+}\left[\mathrm{PF}_{6}\right]^{-}$and $\left[\mathrm{PCl}_{4}\right]^{+}\left[\mathrm{PF}_{6}\right]$
(B) $\left[\mathrm{PCl}_{4}\right]^{+}\left[\mathrm{PCl}_{4} \mathrm{~F}_{2}\right]^{-}$and $\left[\mathrm{PCl}_{4}\right]^{+}\left[\mathrm{PF}_{6}\right]^{-}$
(C) PF_{3} and PCl_{3}
(D) PF_{5} and PCl_{3}

Ans. (B)
Sol. $\quad \mathrm{PCl}_{5} \xrightarrow[\text { organicsolvent }]{\text { Fluorination polar }}\left[\mathrm{PCl}_{4}\right]^{+}\left[\mathrm{PCl}_{4} \mathrm{~F}_{2}\right]^{-} \quad$ and $\quad\left[\mathrm{PCl}_{4}\right]^{+}\left[\mathrm{PF}_{6}\right]^{-}$
colourless crystal White crystal

Unleashing Potential

SECTION 2 (Maximum Marks: 12)

- This section contains THREE (03) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is (are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : $+4 \quad$ ONLY if (all) the correct option(s) is(are) chosen;
Partial Marks : +3 If all the four options are correct but ONLY three options are chosen;
Partial Marks : +2 If three or more options are correct but ONLY two options are chosen, both of which are correct;
Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a correct option;
Zero Marks : $0 \quad$ If unanswered;
Negative Marks : -2 In all other cases.

- For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then
choosing ONLY (A), (B) and (D) will get +4 marks;
choosing ONLY (A) and (B) will get +2 marks;
choosing ONLY (A) and (D) will get +2 marks;
choosing ONLY (B) and (D) will get +2 marks;
choosing ONLY (A) will get +1 mark;
choosing ONLY (B) will get +1 mark; choosing ONLY (D) will get +1 mark;
choosing no option(s) (i.e. the question is unanswered) will get 0 marks and choosing any other option(s) will get -2 marks.

5. A n aqueous solution of hydrazine $\left(\mathrm{N}_{2} \mathrm{H}_{4}\right)$ is electrochemically oxidized by O_{2}, there by releasing chemical energy in the form of electrical energy. One of the products generated from the electrochemical reaction is $\mathrm{N}_{2}(\mathrm{~g})$.
Choose the correct statement(s) about the above process
(A) OH^{-}ions react with $\mathrm{N}_{2} \mathrm{H}_{4}$ at the anode to form $\mathrm{N}_{2}(\mathrm{~g})$ and water, releasing 4 electrons to the anode.
(B) At the cathode, $\mathrm{N}_{2} \mathrm{H}_{4}$ breaks to $\mathrm{N}_{2}(\mathrm{~g})$ and nascent hydrogen released at the electrode reacts with oxygen to form water.
(C) At the cathode, molecular oxygen gets converted to OH^{-}.
(D) Oxides of nitrogen are major by-products of the electrochemical process.

Ans. (AC)

Sol.

Anode: $\quad \mathrm{N}_{2} \mathrm{H}_{4}+4 \mathrm{OH}^{-} \longrightarrow \mathrm{N}_{2}+4 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{e}^{-}$
Cathode: $\quad \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{e}^{-} \longrightarrow 4 \mathrm{OH}^{-} \quad \mathrm{E}^{\circ}=1.23$
$\mathrm{N}_{2} \mathrm{H}_{4}+\mathrm{O}_{2} \rightleftharpoons \mathrm{~N}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
There is no contact between $\mathrm{N}_{2} \mathrm{H}_{4}$ and O_{2}. During cell operation therefore product of oxides are very less.
6. The option(s) with correct sequence of reagents for the conversion of P to Q is (are)

(A) i) Lindlar's catalyst, H_{2}; ii) $\mathrm{SnCl}_{2} / \mathrm{HCl}$; iii) NaBH_{4}; iv) $\mathrm{H}_{3} \mathrm{O}^{+}$
(B) i) Lindlar's catalyst, H_{2}; ii) $\mathrm{H}_{3} \mathrm{O}^{+}$; iii) $\mathrm{SnCl}_{2} / \mathrm{HCl}$; iv) NaBH_{4}
(C) i) NaBH_{4}; ii) $\mathrm{SnCl}_{2} / \mathrm{HCl}$; iii) $\mathrm{H}_{3} \mathrm{O}^{+}$;iv) Lindlar's catalyst, H_{2}
(D) i) Lindlar's catalyst, H_{2} ii) NaBH_{4}; iii) $\mathrm{SnCl}_{2} / \mathrm{HCl}$; iv) $\mathrm{H}_{3} \mathrm{O}^{+}$;

Ans. (CD)

Sol.

-

\downarrow (ii) NaBH_{4}

7. The compound(s) having peroxide linkage is(are)
(A) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$
(B) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$
(C) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$
(D) $\mathrm{H}_{2} \mathrm{SO}_{5}$

Ans. (BD)

Sol.
(A)

(B)

(C)

(D)

SECTION 3 (Maximum Marks: 24)

- This section contains SIX (06) questions.
- The answer to each question is a NON-NEGATIVE INTEGER.
- For each question, enter the correct integer corresponding to the answer using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 If ONLY the correct integer is entered;
Zero Marks : $0 \quad$ In all other cases.
8. To form a complete monolayer of acetic acid on 1 g of charcoal, 100 mL of 0.5 M acetic acid was used. Some of the acetic acid remained unadsorbed. To neutralize the unadsorbed acetic acid, 40 mL of 1 M NaOH solution was required. If each molecule of acetic acid occupies $\mathrm{P} \times 10^{-23} \mathrm{~m}^{2}$ surface area on charcoal, the value of P is \qquad .
[Use given data: Surface area of charcoal $=1.5 \times 10^{2} \mathrm{~m}^{2} \mathrm{~g}^{-1}$;
Avogadro's number (NA) $\left.=6.0 \times 10^{23} \mathrm{~mol}^{-1}\right]$
Ans. 2500
Sol. Total milimoles of $\mathrm{CH}_{3} \mathrm{COOH}=50$
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH} \longrightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}$
Unadsorbed 40 m moles
m moles of $\mathrm{CH}_{3} \mathrm{COOH}$ adsorbed $=10$
Total molecules of $\mathrm{CH}_{3} \mathrm{COOH}$ adsorbed

$$
\begin{aligned}
& =6 \times 10^{23} \times 10 \times 10^{-3} \\
& =6 \times 10^{21}
\end{aligned}
$$

6×10^{21} molecules occupies $1.5 \times 10^{2} \mathrm{~m}^{2}$
1 molecule occupies $=\frac{1.5 \times 10^{2}}{6 \times 10^{21}}$

$$
\begin{aligned}
& =\frac{15}{60} \times 10^{-19}=0.25 \times 10^{-19} \\
& =25 \times 10^{-21} \\
& =2500 \times 10^{-23} \\
& =2500
\end{aligned}
$$

9. Vessel-1 contains $\mathbf{w}_{\mathbf{2}} \mathbf{g}$ of a non - volatile solute \mathbf{X} dissolved in $\mathbf{w}_{\mathbf{1}} \mathbf{g}$ of water. vessel-2 contains $\mathbf{w}_{2} \mathbf{g}$ of another non - volatile solute \mathbf{Y} dissolved in $\mathbf{w}_{\mathbf{1}} \mathbf{g}$ of water. Both the vessel are at the same temperature and pressure. The molar mass of \mathbf{X} is 80% of that of \mathbf{Y}. The van't Hoff factor for X is 1.2 times of that of \mathbf{Y} for their respective concentrations.

The elevation of boiling point for solution in Vessel -1 is \qquad \% of the solution in Vessel-2
Ans. 150
Sol.

Vessel-1
Non-volatile solute (X) $=\mathrm{W}_{2}$
Weight of water $=\mathrm{W}_{1}$
$\mathrm{M}_{\mathrm{X}}=0.8 \mathrm{M}_{\mathrm{Y}}$
$\mathrm{i}_{\mathrm{X}}=1.2 \mathrm{i}_{\mathrm{Y}}$
$\frac{\left(\Delta \mathrm{T}_{\mathrm{b}}\right)_{\text {Vessel-1 }}}{\left(\Delta \mathrm{T}_{\mathrm{b}}\right)_{\text {Vessel-2 }}}=\frac{\mathrm{i}_{\mathrm{X}} \mathrm{K}_{\mathrm{b}} \times \frac{\mathrm{W}_{2}}{\mathrm{M}_{\mathrm{X}}} \times \frac{1000}{\mathrm{~W}_{1}}}{\mathrm{i}_{\mathrm{Y}} \mathrm{K}_{\mathrm{b}} \times \frac{\mathrm{W}_{2}}{\mathrm{M}_{\mathrm{Y}}} \times \frac{1000}{\mathrm{~W}_{1}}}$
$=\frac{1.2 \mathrm{i}_{\mathrm{Y}}}{\mathrm{i}_{\mathrm{Y}}} \times \frac{\mathrm{M}_{\mathrm{Y}}}{0.8 \mathrm{M}_{\mathrm{Y}}}=\frac{1.2}{0.8}=\frac{3}{2}=1.5$
Ans. $=1.5 \times 100=150$
10. For a double strand DNA, one strand is given below:

The amount of energy required to split the double strand DNA into two single strands is \qquad kcalmol ${ }^{-1}$.
[Given: Average energy per H-bond for A-T base pair $=1.0 \mathrm{kcal} \mathrm{mol}^{-1}$, G-C base pair $=1.5 \mathrm{kcal}$ mol^{-1}, and A-U base pair $=1.25 \mathrm{kcal} \mathrm{mol}^{-1}$. Ignore electrostatic repulsion between the phosphate groups.]
Ans. 41
Sol. In DNA number of H-bonds between Adenine \& Thymine $=2$, Guanine \& Cytosine $=3$

No. of $(\mathrm{A}=\mathrm{T}) \mathrm{H}$-bonds broken to split the double strand DNA into two single strands. $=7$
No. of $(G \equiv C) H$-bonds broken to split the double strand DNA into two single strands. $=6$
Total amount of energy required $=7 \times 2 \times 1+6 \times 3 \times 1.5$

$$
=14+27=41 \mathrm{~K} \cdot \mathrm{Cal} / \mathrm{mol}
$$

Unleashing Potential
11. A sample initially contains only U-238 isotope of uranium. With time, some of the U-238 radioactively decays into $\mathrm{Pb}-206$ while the rest of it remains undisintegrated.
When the age of the sample is $\mathrm{P} \times 10^{8}$ years, the ratio of mass of $\mathrm{Pb}-206$ to that of $\mathrm{U}-238$ in the sample is found to be 7 . The value of P is \qquad .
[Given: Half-life of U-238 is 4.5×10^{9} years; $\log _{\mathrm{e}} 2=0.693$]
Ans. 143.5 (Range 142-144)
Sol. $\quad \mathrm{U}^{238} \longrightarrow \mathrm{~Pb}^{206}$
According to question
$\frac{\mathrm{W}_{\mathrm{Pb}}}{\mathrm{W}_{\text {Uranium }}}=7$
$\left(\mathrm{n}_{\text {Uranium }}\right)_{\text {Sample }}=\frac{\mathrm{x}}{238}$
$\left(\mathrm{n}_{\mathrm{Pb}}\right)_{\text {Sample }}=\frac{7 \mathrm{x}}{206}$
Initial moles of $U^{238}=\frac{x}{238}+\frac{7 x}{206}$
$\mathrm{t}=\frac{1}{\lambda} \ln \frac{\mathrm{n}_{0}}{\mathrm{n}}$
$\mathrm{t}=\frac{4.5 \times 10^{9}}{\ln 2} \ln \frac{\frac{\mathrm{x}}{238}+\frac{7 \mathrm{x}}{206}}{\mathrm{x}}$
238
$\mathrm{t}=\frac{4.5 \times 10^{9}}{\ln 2} \times \ln 9$
$\mathrm{t}=\frac{4.5 \times 10^{9}}{0.3010} \times 2 \times 0.48$
$=14.35 \times 10^{9}=143.5 \times 10^{8}$
Ans. 143.5 (Range 142 -144)
12. Among $\left[\mathrm{Co}(\mathrm{CN})_{4}\right]^{4-},\left[\mathrm{Co}\left(\mathrm{CO}_{3}(\mathrm{NO})\right], \mathrm{XeF}_{4},\left[\mathrm{PCl}_{4}\right]^{+},\left[\mathrm{PdCl}_{4}\right]^{2-},\left[\mathrm{ICl}_{4}\right]^{-},\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]^{3-}\right.$ and P_{4} the total number of species with tetrahedral geometry is \qquad .
Ans. (5)
Sol. $\quad\left[\mathrm{Co}(\mathrm{CN})_{4}\right]^{4-}$
\longrightarrow Tetrahedral
$\left[\mathrm{Co}(\mathrm{CO})_{3}(\mathrm{NO})\right] \quad \longrightarrow$ Tetrahedral

XeF_{4}	\longrightarrow Square planar
PCl_{4}^{+1}	\longrightarrow Tetrahedral
$\left[\mathrm{PdCl}_{4}\right]^{2-}$	\longrightarrow Square planar
ICl_{4}^{-}	\longrightarrow Square planar
$\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]^{3-}$	\longrightarrow Tetrahedral
P_{4}	\longrightarrow Tetrahedral

Unleashing Potential
13. An organic compound \mathbf{P} having molecular formula $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{3}$ gives ferric chloride test and does not have intramolecular hydrogen bond. The compound P reacts with 3 equivalents of $\mathrm{NH}_{2} \mathrm{OH}$ to produce oxime \mathbf{Q}. Treatment of \mathbf{P} with excess methyl iodide in the presence of KOH produces compound \mathbf{R} as the major product. Reaction of \mathbf{R} with excess iso-butylmagnesium bromide followed by treatment with $\mathrm{H}_{3} \mathrm{O}^{+}$gives compound \mathbf{S} as the major product. The total number of methyl $\left(-\mathrm{CH}_{3}\right)$ group(s) in compound \mathbf{S} is \qquad .

Ans. 6

Sol.

SECTION 4 (Maximum Marks: 12)

- This section contains TWO (02) paragraphs.
- Based on each paragraph, there are TWO (02) questions.
- The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value of the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
- If the numerical value has more than two decimal places, truncate/round-off the value to TWO decimal places.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If ONLY the correct numerical value is entered in the designated place;
Zero Marks : $0 \quad$ In all other cases.

"PARAGRAPH I"

An organic compound \mathbf{P} with molecular formula $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{2}$ decolorizes bromine water and also shows positive iodoform test. \mathbf{P} on ozonolysis followed by treatment with $\mathrm{H}_{2} \mathrm{O}_{2}$ gives \mathbf{Q} and \mathbf{R}. While compound \mathbf{Q} shows positive iodoform test, compound \mathbf{R} does not give positive iodoform test. \mathbf{Q} and \mathbf{R} on oxidation with pyridinium chlorochromate (PCC) followed by heating give \mathbf{S} and \mathbf{T}, respectively. Both \mathbf{S} and \mathbf{T} show positive iodoform test.

Complete copolymerization of 500 moles of \mathbf{Q} and 500 moles of \mathbf{R} gives one mole of a single acyclic copolymer \mathbf{U}.
[Given, atomic mass: $\mathrm{H}=1, \mathrm{C}=12, \mathrm{O}=16$]
14. Sum of number of oxygen atoms in S and T is \qquad .

Ans. 2
Sol. Compound $\mathrm{P}\left(\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{2}\right)$ has one $\mathrm{C}=\mathrm{C}$ and two OH groups.
$\mathrm{P} \xrightarrow{\mathrm{O}_{3}} \xrightarrow{\mathrm{H}_{2} \mathrm{O}_{2}} \mathrm{Q}+\mathrm{R}$ (Q shows iodoform test but R does not)
$\mathrm{Q} \xrightarrow{\mathrm{PCC}} \xrightarrow{\Delta} \mathrm{S}$
$\mathrm{R} \xrightarrow{\mathrm{PCC}} \xrightarrow{\Delta} \mathrm{T}$ (Both $\mathrm{S} \& \mathrm{~T}$ show iodoform test)

Sum of number of O -atoms in S and $\mathrm{T}=1+1=2$

Unleashing Potential
15. The molecular weight of U is \qquad .
Ans. 93018

Sol.

Number of moles of monomer units of Q and R in one mole of polymer $U=500$ moles each Mass of the polymer $\mathrm{U}=$ mass of 500 moles of (monomer $\mathrm{Q}+$ monomer R) - mass of 999 moles of $\mathrm{H}_{2} \mathrm{O}=(104 \times 500+118 \times 500)-999 \times 18=93018 \mathrm{~g}$

"PARAGRAPH II"

When potassium iodide is added to an aqueous solution of potassium ferricyanide, a reversible reaction is observed in which a complex \mathbf{P} is formed. In a strong acidic medium, the equilibrium shifts completely towards \mathbf{P}. Addition of zinc chloride to \mathbf{P} in a slightly acidic medium results in a sparingly soluble complex \mathbf{Q}.
16. The number of moles of potassium iodide required to produce two moles of \mathbf{P} is \qquad .

Ans. (2)
Sol. $\quad 2 \mathrm{~K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]+2 \mathrm{KI} \longrightarrow 2 \mathrm{~K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]+\mathrm{I}_{2}$
(P)

Number of moles of potassium iodide required to produce two moles of P is 2.
17. The number of zinc ions present in the molecular formula of Q is \qquad .
Ans. (3)
Sol. $\quad 3 \mathrm{Zn}^{2+}+\underset{\text { (Excess) }}{2 \mathrm{~K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]} \longrightarrow \mathrm{K}_{2} \mathrm{Zn}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{2}+6 \mathrm{~K}^{+}$

