

JEE ADVANCED 2023

PAPER - 1

Duration : 3 Hours

SUBJECT - PHYSICS

LEAGUE OF TOPPERS (Since 2020) TOP 100 AIRs IN JEE ADVANCED

Starting From : **7, 14, 21 & 28 JUNE'23**

Avail Scholarship up to 90% through R-NET on EVERY SUNDAY

Reliable Institute : A-10, Road No.1, IPIA, Kota-324005 (Rajasthan), India Tel. : 0744-3535544, 2665544 I Website : www.reliablekota.com I E-mail : info@reliablekota.com

PHYSICS

1. A slide with a frictionless curved surface, which becomes horizontal at its lower end, is fixed on the terrace of a building of height 3 h from the ground, as shown in the figure. A spherical ball of mass m is released on the slide from rest at a height h from the top of the terrace. The ball leaves the slide with a velocity $\vec{u}_0 = u_0 \hat{x}$ and falls on the ground at a distance d from the building making an angle θ with the horizontal. It bounces off with a velocity \vec{v} and reaches a maximum height h₁. The acceleration due to gravity is g and the coefficient of restitution of the ground is $\frac{1}{\sqrt{3}}$. Which of the following statement(s) is (are) correct? [JEE (Advanced)-2023, P-1; 4/60, -2] [Centre of Mass] [M]

Ans.

Sol.

$$h_1 = \frac{\left(\sqrt{2gh}\right)^2}{2g} = h$$

2. A plane polarized blue light ray is incident on a prism such that there is no reflection from the surface of the prism. The angle of deviation of the emergent ray is $\delta = 60^\circ$ (see Figure-1). The angle of minimum deviation for red light from the same prism is $\delta_{\min} = 30^\circ$ (see Figure-2). The refractive index of the prism material for blue light is $\sqrt{3}$. Which of the following statement(s) is(are) correct? [JEE (Advanced)-2023, P-1; 4/60, -2]

 $\delta = i + e - A$ e = A

e = A1. sin 60° = $\sqrt{3}$ sin r₁ r₁ = 30° $\sqrt{3}$ sin (A -30°) = sin e $\sqrt{3}$ sin (A -30°) = sin A A = 60° (hit & trial)

'B' is wrong

Unleashing Potential in Red light $30^\circ = 2i - A$ $I = 45^\circ$ 1. $\sin 45^\circ = n_R \sin\left(\frac{A}{2}\right)$ $n_R = \sqrt{2}$ 'C' is correct

'D' is correct

3. In a circuit shown in the figure, the capacitor C is initially uncharged and the key K is open. In this condition, a current of 1 A flows through the 1 Ω resistor. The key is closed at time t = t₀. Which of the following statement(s) is(are) correct? [Given: $e^{-1} = 0.36$]

Initially

Ans.

Sol.

Ans.

Sol.

$$E_{eq} = \frac{\frac{15}{R} + \frac{0}{3}}{\frac{1}{R} + \frac{1}{3}} = \frac{45}{R+3}$$
$$\frac{\frac{E_{eq} - 5}{1 + \frac{45}{R+3}}}{1 + \frac{45}{R+3}} = 1 \text{ (current in 1 } \Omega \text{ resistance)}$$
$$\frac{45}{R+3} = 1 + \frac{45}{R+3}$$
$$45 = R + 3 + 45$$

4. A bar of mass M = 1.00 kg and length L = 0.20 m is lying on a horizontal frictionless surface. One end of the bar is pivoted at a point about which it is free to rotate. A small mass m = 0.10 kg is moving on the same horizontal surface with 5.00 m s⁻¹ speed on a path perpendicular to the bar. It hits the bar at a distance L/2 from the pivoted end and returns back on the same path with speed v. After this elastic collision, the bar rotates with an angular velocity ω . Which of the following statement is correct? [JEE (Advanced)-2023, P-1; 3/60, -1]

[Rigid Body Dynamics] [M] (A) $\omega = 6.98 \text{ rad s}^{-1} \text{ and } v = 4.30 \text{ m s}^{-1}$ (C) $\omega = 3.75 \text{ rad s}^{-1} \text{ and } v = 4.30 \text{ m s}^{-1}$ (A) M,L M,L Just before collision Just after collision

angular momentum conservation about pivot

$$m(5)\frac{L}{2} = \frac{ML^2\Omega}{2} - mv\frac{L}{2}$$
$$\frac{1}{10} \times \frac{5}{2} = \frac{L}{3}\omega - \frac{1}{10} \times \frac{V}{2}$$
$$\frac{1}{4} = \frac{2\omega}{30} - \frac{V}{20}$$
$$15 = 4\omega - 3v$$
$$e = 1 = \frac{\omega\frac{L}{2} + v}{5}$$

$$5 = \frac{\omega}{10} + v \qquad \dots (2)$$

$$4\omega - 3v = 15 \qquad \dots (3)$$

$$4\omega - 3\left[5 - \frac{\omega}{10}\right] = 15$$

$$4\omega - 15 + \frac{3\omega}{10} = 15$$

$$4\omega + \frac{3\omega}{10} = 30$$

$$40\omega + 3\omega = 300$$

$$\omega = \frac{300}{43} = 6.97 \text{ rad / s}$$

$$v = 4.3 \text{ m/s}$$
so option 'A' is correct

5. A container has a base of 50 cm \times 5 cm and height 50 cm, as shown in the figure. It has two parallel electrically conducting walls each of area 50 cm \times 50 cm. The remaining walls of the container are thin and non-conducting. The container is being filled with a liquid of dielectric constant 3 at a uniform rate of 250 cm³ s⁻¹. What is the value of the capacitance of the container after 10 seconds?

[Given : Permittivity of free space $\epsilon_0 = 9 \times 10^{-12} \text{ C}^2 \text{N}^{-1} \text{m}^{-2}$, the effects of the non-conducting walls on the capacitance are negligible] [JEE (Advanced)-2023, P-1; 3/60, -1]

6. One mole of an ideal gas expands adiabatically from an initial state (T_A, V_0) to final state $(T_f, 5V_0)$. Another mole of the same gas expands isothermally from a different initial state (T_B, V_0) to the same final state $(T_f, 5V_0)$. The ratio of the specific heats at constant pressure and constant volume of this ideal gas is γ . What is the ratio T_A/T_B ?

			[JEE (Advanced)-2023, P-1; 3/60, -1]			
	<i>−γ</i> −1	(m) - 1-7				
	(A) 5^{r-1}	(B) 5^{1}	(C) 5^{r}	(D) $5^{1+\gamma}$		
Ans.	(A)					
Sol.	$PV^{\gamma} = C$ for first c	ase				
	$T_1 V^{\gamma - 1} = C$					
	$T_{A}V_{0}^{\gamma 1} = T_{f}(5V_{0})^{\gamma - 1}$	-1(1)				
	for second case					
	$T_{\rm B} = T_{\rm f}$					
	. Т. Т.					
	Now $\frac{-A}{T_B}$ means $\frac{-A}{T_f}$					
	by equation (1)					
	$T (5V)^{\gamma-1}$					
	$\frac{\mathbf{I}_{\mathrm{A}}}{\mathbf{T}} = \left \frac{\mathbf{J} \mathbf{v}_{0}}{\mathbf{I}_{\mathrm{A}}} \right = 5^{3}$	<i>γ</i> −1				
	$T_{f} (V_{0})$					
	So option 'A' is co	orrect.				
7.	Two satellites P a	and Q are moving ir	n different circular orbits a	around the Earth (radius R). The		
	heights of P and	Q from the Earth s	surface are h_P and h_Q , res	pectively, where $h_P = R/3$. The		
	accelerations of P	and Q due to Earth'	s gravity are g_P and g_Q , res	spectively. If $g_P/g_Q = 36/25$, what		
	is the value of h_Q ?		[JEE (Adva	nced)-2023, P-1; 3/60, –1]		
			[Gravitation	ı) (E)		
	(A) 3R/5	(B) R/6	(C) 6 R/5	(D) 5 R/6		
Ans.	(A)		5 0	·		
Sal	g _ GM		9 .100			
501.	$g_{\rm P} = \frac{1}{\left({\rm R} + {\rm h}_{\rm P}\right)^2}$					
	(P) CM		SI			
	$g_Q = \frac{OW}{\sqrt{2}}$					
	$(\mathbf{R} + \mathbf{h}_{\mathbf{Q}})^2$					
	$\sigma_{-} \left(\mathbf{R} + \mathbf{h}_{0} \right)^{2}$	36				
	$\frac{s_{\rm P}}{q} = \left \frac{q}{R+h} \right =$	$\frac{30}{25}$				
	$g_Q \left(\mathbf{R} + \mathbf{n}_P \right)$	1.)				
	$S(R+n_Q) = 0 (R + 1)$	n _P)				
	$5n_Q = K + 6n_P$					
	$5h_Q = R + 6\frac{\kappa}{2}$					
	- <u>j</u>					
	$h_0 = \frac{3K}{2}$					
	\sim 5					
	Option is 'A' is con	rrect.				

8. A Hydrogen-like atom has atomic number Z. Photons emitted in the electronic transitions from level n = 4 to level n = 3 in these atoms are used to perform photoelectric effect experiment on a target metal. The maximum kinetic energy of the photoelectrons generated is 1.95 eV. If the photoelectric threshold wavelength for the target metal is 310 nm, the value of Z is ______. [Given: hc = 1240 eV-nm and Rhc = 13.6 eV, where R is the Rydberg constant, h is the Planck's constant and c is the speed of light in vacuum] [JEE (Advanced)-2023, P-1; 4/60]

[Modern Physics] [M]

Ans. 3
Sol.
$$13.6 \times z^2 \left[\frac{1}{9} - \frac{1}{16} \right] - \phi = \text{K.E}$$

 $\frac{13.6z^2 \times 7}{16 \times 9} - \phi = 1.95$
 $\frac{13.6z^2 \times 7}{16 \times 9} - 4 = 1.95$
 $\frac{13.6 \times 7}{16 \times 9} z^2 = 5.95$
 $z^2 = 9$
 $z = 3$

9. An optical arrangement consists of two concave mirrors M_1 and M_2 , and a convex lens L with a common principal axis, as shown in the figure. The focal length of L is 10 cm. The radii of curvature of M_1 and M_2 are 20 cm and 24 cm, respectively. The distance between L and M_2 is 20 cm. A point object S is placed at the mid-point between L and M_2 on the axis. When the distance between L and M_1 is n/7 cm, one of the images coincides with S. The value of n is

 $v_2 = \frac{80}{7} cm$

One possibility $-20 + \frac{80}{7} = \frac{140 + 80}{7} = \frac{220}{7} = \frac{n}{7} \Rightarrow n = 220 \text{ cm}$ other possibility = If image of 'L' is formed on pole of ' M_1 ' \Rightarrow $\frac{80}{7} = \frac{n}{7} = n = 80$

OR

Reflection from M₁.

 $\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$ $\frac{1}{v} + \frac{1}{v} = \frac{1}{f} = 60 \text{ cm}$ For lens $v = \frac{uf}{u+f} = \frac{(-80)10}{-80+10} = \frac{80}{7} cm$

For image to form at S itself Ray after reflection from mirror 'M2' must be PARALLEL to lens \therefore L must form image at focus of 'M₂'. ntial

$$\frac{n}{7} = 10 + \frac{80}{7} = \frac{150}{7}$$
$$n = 150$$

In an experiment for determination of the focal length of a thin convex lens, the distance of the 10. object from the lens is 10 ± 0.1 cm and the distance of its real image from the lens is 20 ± 0.2 cm. The error in the determination of focal length of the lens is n %. The value of n is

[JEE (Advanced)-2023, P-1; 4/60]

Ans. Sol.

1

$$u = 10 \pm 0.1 \text{ cm}$$

$$v = 20 \pm 0.1 \text{ cm}$$

$$\frac{1}{v} - \frac{1}{u} = \frac{1}{f} = \frac{1}{20} - \frac{1}{-10} = \frac{1+2}{20} = \frac{1}{f} = \boxed{f = \frac{20}{3}}$$

$$-\frac{1}{v^2} = \delta v + \frac{1}{u^2} \delta u = \frac{-1}{f^2} \delta f$$

$$\frac{\delta f}{f^2}_{N,..} = \frac{\delta u}{u^2} + \frac{\delta v}{v^2}$$

$$\frac{\delta f}{f^2} = \frac{0.1}{100} + \frac{0.2}{400} = \left(\frac{0.4 + 0.2}{400}\right) = \frac{0.6}{400}$$

$$\frac{\delta f}{f} = \frac{0.6}{400} \times \frac{20}{3}$$

$$\frac{\delta f}{f} \times 100\% = \frac{0.6}{400} \times \frac{20}{3} 100 = \frac{12}{12} = 1$$

$$\delta = 1\%$$

11. A closed container contains a homogeneous mixture of two moles of an ideal monatomic gas $(\gamma = 5/3)$ and one mole of an ideal diatomic gas $(\gamma = 7/5)$. Here, γ is the ratio of the specific heats at constant pressure and constant volume of an ideal gas. The gas mixture does a work of 66 Joule when heated at constant pressure. The change in its internal energy is ______ Joule.

[JEE (Advanced)-2023, P-1; 4/60] [KTG & Thermodynamics] [M]

Ans. 121

Sol. $f_{mix} = \frac{2 \times 3 + 1 \times 5}{3} = \frac{11}{3}$ W = 66 $\delta R \ \delta T = 66$ $\delta u = nc_v \ \delta T$ $\delta u = n \frac{f_{mix.}}{2}^R \ \delta T$ $\delta v = \frac{11}{3 \times 2} \times 66$ $\delta v 121 \text{ Joule}$

12. A person of height 1.6 m is walking away from a lamp post of height 4 m along a straight path on the flat ground. The lamp post and the person are always perpendicular to the ground. If the speed of the person is 60 cm s^{-1} , the speed of the tip of the person's shadow on the ground with respect to the person is _____ cm s⁻¹. [JEE (Advanced)-2023, P-1; 4/60]

 $\Delta \text{ ABC and } \Delta \text{ADE is similar}$ $\frac{4}{x_2} = \frac{1.6}{x_2 - x_1}$ $x_2 = \frac{x_1}{0.6}$ $v_2 = \frac{v_1}{0.6} = \frac{60}{0.6} = 100 \text{ cm / s}$ $v_{2/1} = v_2 - v_1 = 100 - 60 = 40 \text{ cm/s}$ Ans.= 40

13. Two point-like objects of masses 20 gm and 30 gm are fixed at the two ends of a rigid massless rod of length 10 cm. This system is suspended vertically from a rigid ceiling using a thin wire attached to its center of mass, as shown in the figure. The resulting torsional pendulum undergoes small oscillations. The torsional constant of the wire is 1.2×10^{-8} N m rad⁻¹. The angular frequency of the oscillations in $n \times 10^{-3}$ rad s⁻¹. The value of *n* is

 14. List-I shows different radioactive decay processes and List-II provides possible emitted particles. Match each entry in List-I with an appropriate entry from List-II, and choose the correct option.
 LJEE (Advanced)-2023, P-1: 3/60: -11

List-I	[Nuclear Physics] [E] List-II
(P) $_{92}^{238}$ U \rightarrow_{91}^{234} Pa	(1) one α particle and one β^+ particle
(Q) $^{214}_{82}$ Pb \rightarrow^{210}_{82} Pb	(2) three β^- particles and one α particle
(R) $_{81}^{210} \mathrm{T}\ell \rightarrow_{82}^{206} \mathrm{Pb}$	(3) two β^- particles and one α particle
(S) $_{91}^{228}$ Pa \rightarrow_{88}^{224} Ra	(4) one α particle and one β^- particle
	(5) one α particle and two β^+ particles

सूची-I में विभिन्न रेडियोसक्रिय क्षय प्रक्रम प्रदर्शित है तथा सूची-II में उत्सर्जित होने वाले सम्भावित कण प्रदर्शित है। सूची-I में दी गई प्रविष्ठियों को सूची-II की उचित प्रविष्ठियों से सुमेलित करके सही विकल्प का चयन कीजिये।

	[JEE (Advanced)-2023, P-1; 3/60; -1] [Nuclear Physics] [E]
List-I	List-II
(P) ${}^{238}_{92}$ U $\rightarrow {}^{234}_{91}$ Pa	(1) एक α कण व एक β^+ कण
(Q) ${}^{214}_{82}$ Pb $\rightarrow {}^{210}_{82}$ Pb	(2) तीन β^- कण व एक $lpha$ कण
(R) ${}^{210}_{81} \mathrm{T}\ell \rightarrow {}^{206}_{82} \mathrm{Pb}$	(3) दो β^- कण व एक α कण
(S) ${}^{228}_{91}$ Pa $\rightarrow {}^{224}_{88}$ Ra	(4) एक α कण व एक β ⁻ कण
	(5) एक α कण व दो β^+ कण
(A) $P \rightarrow 4, Q \rightarrow 3, R \rightarrow 2, S \rightarrow 1$	(B) $P \rightarrow 4, Q \rightarrow 1, R \rightarrow 2, S \rightarrow 5$
(C) $P \rightarrow 5, Q \rightarrow 3, R \rightarrow 1, S \rightarrow 4$	(D) $P \rightarrow 5, Q \rightarrow 1, R \rightarrow 3, S \rightarrow 2$
(A)	
(P) ${}^{238}_{92}$ U $\longrightarrow {}^{234}_{92}$ Pa + ${}^{4}_{2}$ He + ${}^{0}_{-1}\beta$	
$1\alpha \& 1\beta^-$	81.64
(Q) ${}^{214}_{82}$ Pb $\longrightarrow^{210}_{82}$ Pb $+ {}^{4}_{2}$ He $+ 2{}^{0}_{-1}\beta$	
$1\alpha \& 2\beta^-$	NS N
(R) ${}^{210}_{81} \mathrm{T}\ell \longrightarrow {}^{206}_{82} \mathrm{Pb} + {}^{4}_{2} \mathrm{He} + {}^{0}_{-1}\beta$	100
$1\alpha \& 3\beta^{-}$	
(S) ${}^{228}_{91}$ Pa $\longrightarrow {}^{224}_{88}$ Ra $+ {}^{4}_{2}$ He $+ {}_{+1}\beta$	▼
$1\alpha \& 1\beta^+$	
	List-I (P) ${}^{238}_{92} U \rightarrow {}^{234}_{91} Pa$ (Q) ${}^{214}_{82} Pb \rightarrow {}^{210}_{82} Pb$ (R) ${}^{210}_{81} T\ell \rightarrow {}^{226}_{82} Pb$ (S) ${}^{228}_{91} Pa \rightarrow {}^{224}_{88} Ra$ (A) P \rightarrow 4, Q \rightarrow 3, R \rightarrow 2, S \rightarrow 1 (C) P \rightarrow 5, Q \rightarrow 3, R \rightarrow 1, S \rightarrow 4 (A) (P) ${}^{238}_{92} U \longrightarrow {}^{234}_{92} Pa + {}^{4}_{2} He + {}^{0}_{-1}\beta$ $1\alpha \& 1\beta^{-1}$ (Q) ${}^{214}_{82} Pb \longrightarrow {}^{210}_{82} Pb + {}^{4}_{2} He + {}^{0}_{-1}\beta$ $1\alpha \& 2\beta^{-1}$ (R) ${}^{210}_{81} T\ell \longrightarrow {}^{206}_{82} Pb + {}^{4}_{2} He + {}^{0}_{-1}\beta$ $1\alpha \& 3\beta^{-1}$ (S) ${}^{228}_{91} Pa \longrightarrow {}^{224}_{88} Ra + {}^{4}_{2} He + {}_{+1}\beta$ $1\alpha \& 1\beta^{+}$

15. Match the temperature of a black body given in List-I with an appropriate statement in List-II, and choose the correct option.

[Given: Wien's constant as 2.9×10^{-3} m-K and $\frac{hc}{e} = 1.24 \times 10^{-6}$ V-m] [JEE (Advanced)-2023, P-1; 3/60; -1] [Heat Transfer] [M] List-II

(1)	The radiation at peak wavelength can lead to emission
	of photoelectrons from a metal of work function 4 eV.
(2)	The radiation at peak wavelength is visible to human eye.
	(1) (2)

R		le		JEE (ADVANCED) JUNE 2023 DATE-04/06/2023 (PAPER-1)
Uni	(R) 500	0 K	(3)	The radiation at peak emission wavelength will result in the widest central maximum of a single slit diffraction.
	(S) 100	00 K	(4)	The power emitted per unit area is $1/16$ of that emitted by a blackbody at temperature 6000 K.
			(5)	The radiation at peak emission wavelength can be used to image human bones.
Ang	(A) $P - (C) P - (C)$	$\Rightarrow 3, Q \rightarrow 5, R \rightarrow 3, Q \rightarrow 4, R \rightarrow 3$	$2, S \rightarrow 3$ $2, S \rightarrow 1$	(B) $P \rightarrow 3, Q \rightarrow 2, R \rightarrow 4, S \rightarrow 1$ (D) $P \rightarrow 1, Q \rightarrow 2, R \rightarrow 5, S \rightarrow 3$
Sol.	(0)	3000 k		
		$\lambda_m \times 3000 = 2.9$	0×10^{-3}	
		$\lambda_{\rm m} = \frac{2.9}{2} \times 10^{-6}$		
		$= 0.97 \times 10^{-6} \text{ m}$	$= 97 \times 10^{-8}$	m
		$= 970 \times 10^{-9} \text{ m}$		
		= 970 nm		
		= 9700 Å		
	(K)	2.0×10^{-3}	2.0	
		$\lambda_{\rm m} = \frac{2.9 \times 10}{5 \times 10^3} =$	$=\frac{2.9}{5}\times10^{-6}$	
		$= 0.58 \times 10^{-6}$	5	
		$= 58 \times 10^{-8}$		
		$= 580 \times 10^{-9}$		
	(D)	= 580 nm - 5000 V	→ visibl	e
	(K)	2.9×10^{-3}	29	
		$\lambda_{\rm m} = \frac{2.5 \times 10}{5 \times 10^3} =$	$=\frac{2.5}{5}\times 10^{-6}\mathrm{m}$	
		$-\frac{29}{\times 10^{-6}}$ m	-0.5×10^{-6}	6 6
		5	$= 58 \times 10^{-8}$	IN WIND
	h	=	$= 5.8 \times 10^{\circ}$	0,51
	$E = \frac{\pi}{2}$	$\frac{c}{1} = \frac{3 \times 1.24 \times 10^{-6}}{2.9 \times 10^{-6}}$		100
	5×1	.24 2.12	-	
	=	$\frac{1}{.9} = 2.13$		
	(S)	10,000 K		
	$\lambda_m = \lambda_m$	$\frac{2.9 \times 10^{-3}}{10,000}$		
	- 2.0	$10,000$ × 10^{-7} m		
	= 2.9 = 29 >	$\times 10^{-8} \text{ m}$		
	E h	$1.24 \times 10^{-6} eV$		
	$E = -\frac{\lambda}{\lambda}$	$= \frac{1}{29 \times 10^{-8}}$		
	$=\frac{124}{124}$	= 4.275eV		
	29			

16. A series LCR circuit is connected to a 45 $sin(\omega t)$ Volt source. The resonant angular frequency of the circuit is 10^5 rad s⁻¹ and current amplitude at resonance is I₀. When the angular frequency of the source is $\omega = 8 \times 10^4$ rad s⁻¹, the current amplitude in the circuit is 0.05 I₀. If L = 50 mH, match each entry in List-I with an appropriate value from List-II and choose the correct option.

[JEE (Advanced)-2023, P-1; 3/60; -1] [Alternating Current] [M]

17. A thin conducting rod MN of mass 20 gm, length 25 cm and resistance 10 Ω is held on frictionless, long, perfectly conducting vertical rails as shown in the figure. There is a uniform magnetic field $B_0 = 4$ T directed perpendicular to the plane of the rod-rail arrangement. The rod is released from rest at time t = 0 and it moves down along the rails. Assume air drag is negligible. Match each quantity in List-I with an appropriate value from List-II, and choose the correct option. [Given: The acceleration due to gravity g = 10 m s⁻² and e⁻¹ = 0.4]

[JEE (Advanced)-2023, P-1; 3/60; -1] [EMI] [E]

\odot	\odot	⊙ Ī	₿ ₀ ⊙	
<u>о</u> м	\odot	\odot	N O	
•	€25 ●	cm	•	\downarrow^{g}
•	•	•	\odot	
•	⊙	•	•	
•	•	•	•	

List-I

List-II

	$\therefore v = 2 ($	v at t = $1 - e^{.5t}$	∞	
as Option	$t \rightarrow \infty$ (D)	,	$v \rightarrow 2$	

.... (5)

(Classroom) ··-→ selected for

ASIAN PACIFIC MATHEMATICS OLYMPIAD (APMO) 2023

IMOTC 2023 Camp (Conducted by HBCSE)

Success Delivered to the Deserving

RELIABLE INSTITUTE : A-10, Road No.1, IPIA, Kota-324005 (Rajasthan), India Tel. : 0744-3535544, 2665544 | Website : www.reliablekota.com | E-mail : info@reliablekota.com f reliablekota reliablekota reliablekota reliablekota