

JEE ADVANCED 2023

PAPER - 2

Duration : 3 Hours

SUBJECT - CHEMISTRY

LEAGUE OF TOPPERS (Since 2020) TOP 100 AIRs IN JEE ADVANCED

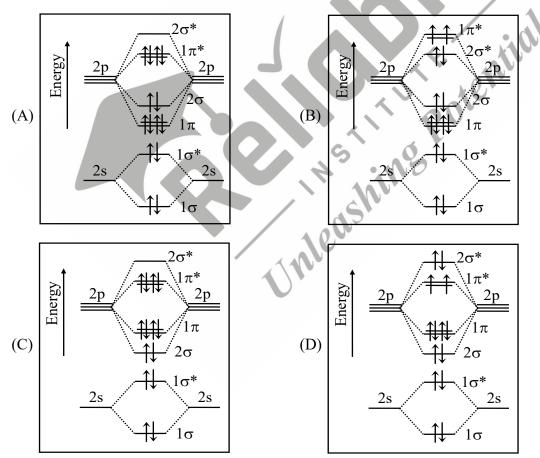
Starting From : **7, 14, 21 & 28 JUNE'23**

Avail Scholarship up to 90% through R-NET on EVERY SUNDAY

Reliable Institute : A-10, Road No.1, IPIA, Kota-324005 (Rajasthan), India Tel. : 0744-3535544, 2665544 I Website : www.reliablekota.com I E-mail : info@reliablekota.com

CHEMISTRY

SECTION 1 (Maximum Marks: 12)


- This section contains FOUR (04) questions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONLY ONE** of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated <u>according to the following marking scheme:</u>

Full Marks : +3 If **ONLY** the correct option is chosen;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks : -1 In all other cases.

1. The correct molecular orbital diagram for F_2 molecule in the ground state is

Ans. (C)

(Chemical Bonding) (E)

Sol. For F₂ KK $(\sigma 2s)^2 (\sigma * 2s)^2 (\sigma 2p)^2 (\pi 2p^2 = \pi 2p^2) (\pi * 2p^2 = \pi * 2p^2)$

- 2. Consider the following statements related to colloids.
 - (I) Lyophobic colloids are **not** formed by simple mixing of dispersed phase and dispersion medium.
 - (II) for emulsions, both the dispersed phase and the dispersion medium are liquid.
 - (III) Micelles are produced by dissolving a surfactant in any solvent at any temperature.
 - (IV) Tyndall effect can be observed from a colloidal solution with dispersed phase having the same refractive index as that of the dispersion medium.

The option with the correct set of statements is

- (A) (I) and (II)(B) (II) and (III)
- (C) (III) and (IV) (D) (II) and (IV)
- Ans. **(A)**

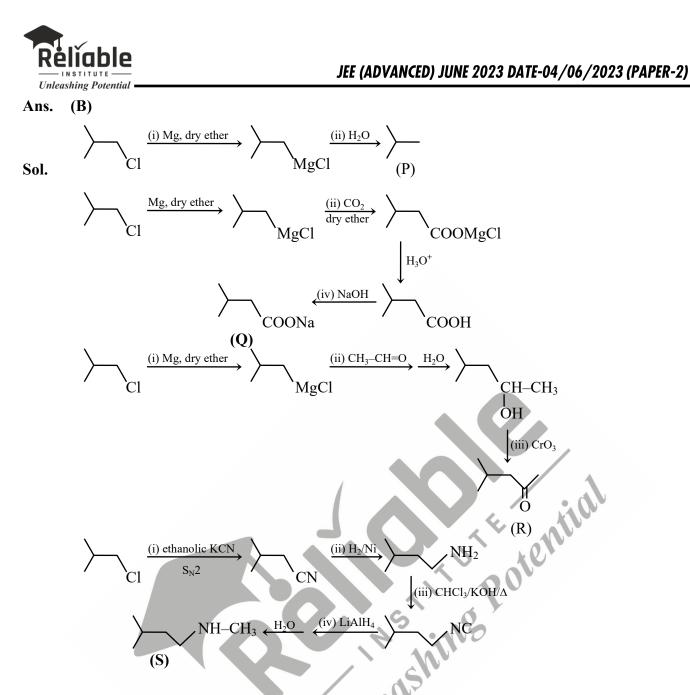
1

(Surface Chemistry) (M)

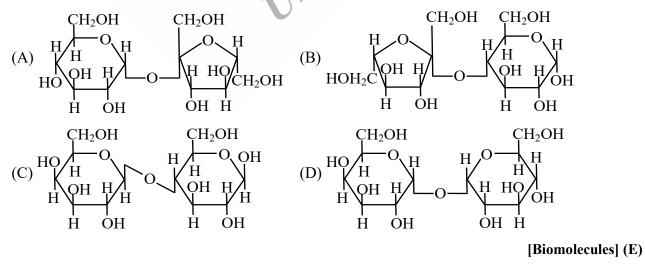
- Sol. (I) Lyophobic colloids are formed by using special methods.
 - (II) Emulsions are colloidal solution of two immiscible liquids.
 - (III) Micelles are formed above Kraft temperature and above CMC.
 - (IV)For Tyndall effect, large difference between refractive index of dispersed phase and tent dispersion medium should present.
- produc INPERSING In the following reactions, P, Q, R, and S are the major products. 3.

Р

$$\begin{array}{c} & \underbrace{\text{(i) Mg, dry ether}}_{\text{(ii) H}_2\text{O}} \end{array} \xrightarrow{} \end{array}$$


$$\searrow \begin{array}{c} (i) \text{ Mg, dry ether} \\ (ii) \text{ CH}_3 \text{ CHO, then } \text{H}_2 \text{O} \\ \hline (iii) \text{ CrO}_3 \end{array} R$$

The correct statement about P, Q, R, and S is


(A) P is a primary alcohol with four carbons.

- (B) Q undergoes Kolbe's electrolysis to give an eight-carbon product.
- (C) R has six carbons and it undergoes Cannizzaro reaction.
- (D) S is a primary amine with six carbons.

[Carbonyl Compounds] (T)

4. A disaccharide X cannot be oxidised by bromine water. The acid hydrolysis of X leads to a laevorotatory solution. The disaccharide X is

Ans. (A)

It is sucrose because it can not oxidise bromine water and its acid hydrolysis gives D-(+)-glucose Sol. and D-(-)-fructose leads to laevorotatory solution.

SECTION 2 (Maximum marks: 12)

- This section contains THREE (03) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is (are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:
 - : +4 **ONLY** if (all) the correct option(s) is(are) chosen; Full Marks
 - Partial Marks : +3 If all the four options are correct but **ONLY** three options are chosen;
 - Partial Marks : +2 If three or more options are correct but **ONLY** two options are chosen, both of which are correct;
 - : +1 If two or more options are correct but **ONLY** one option is chosen and it Partial Marks is a correct option;
 - Zero Marks 0 If unanswered; :
 - Negative Marks : -2 In all other cases.
 - For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then choosing ONLY (A), (B) and (D) will get +4 marks;
 - choosing ONLY (A) and (B) will get +2 marks;
 - choosing ONLY (A) and (D) will get +2marks
 - eashing choosing ONLY (B) and (D) will get +2 marks;
 - choosing ONLY (A) will get +1 mark;
 - choosing ONLY (B) will get +1 mark;
 - choosing ONLY (D) will get +1 mark;
 - choosing no option(s) (i.e. the question is unanswered) will get 0 marks and
 - choosing any other option(s) will get -2 marks.
- The complex(es), which can exhibit the type of isomerism shown by $[Pt(NH_3)_2Br_2]$, is(are) 5. $[en = H_2NCH_2CH_2NH_2]$ (A) $[Pt(en)(SCN)_2]$ (B) $[Zn(NH_3)_2Cl_2]$ $(C) [Pt(NH_3)_2Cl_4]$

(D) $[Cr(en)_2(H_2O)(SO_4)]^+$

Ans. (CD)

```
(Coordination compound) (M)
```

 $[Pt(NH_3)_2Cl_2]$: dsp² square planar Sol.

It can show geometrical isomerism.

 $[Pt(en)_2(SCN)_2] \Rightarrow$ Can't show geometrical isomerism.

 $[Zn(NH_3)_2Cl_2] \Rightarrow$ Can't show geometrical isomerism because it is tetrahedral.

 $[Pt(NH_3)_2Cl_4] \Rightarrow$ Can show geometrical isomerism.

 $[Cr(en)_2(H_2O)(SO_4)]^+ \Rightarrow$ Can show geometrical isomerism.

6. Atoms of metals x, y, and z form face-centred cubic (fcc) unit cell of edge length L_x, body-centred cubic (bcc) unit cell of edge length L_y, and simple cubic unit cell of edge length L_z, respectively.

If
$$r_z = \frac{\sqrt{3}}{2}r_y$$
; $r_y = \frac{8}{\sqrt{3}}r_x$; $M_z = \frac{3}{2}M_y$ and $M_z = 3M_x$, then the correct statement(s) is(are)

[Given: M_x, M_y, and M_z are molar masses of metals x, y, and z, respectively.

 r_x , r_y , and r_z are atomic radii of metals x, y, and z, respectively.]

(A) Packing efficiency of unit cell of x > Packing efficiency of unit cell of y > Packing efficiency of unit cell of z. in Potential

$$(B) L_y > L_z$$

- (C) $L_x > L_y$
- (D) Density of x > Density of y
- (ABD) Ans.

Sol. (A)
$$r_x : r_y : r_z = 1 : \frac{8}{\sqrt{3}} :$$

Packing efficiency

$$\frac{4 \times \frac{4}{3} \pi r_{x}^{3}}{L_{x}^{3}} \qquad : \qquad \frac{2 \times \frac{2}{3} \pi r_{y}^{3}}{L_{y}^{3}} \qquad : \qquad \frac{1 \times \frac{4}{3} \pi r_{z}^{3}}{L_{z}^{3}}$$

$$\frac{4 \times \frac{4}{3} \pi r_{x}^{3}}{(2\sqrt{2} r_{x})^{3}} \qquad : \qquad \frac{2 \times \frac{2}{3} \pi r_{y}^{3}}{\left(\frac{4}{\sqrt{3}} r_{y}\right)^{3}} \qquad : \qquad \frac{1 \times \frac{4}{3} \pi r_{z}^{3}}{(2r_{z})^{3}}$$

$$\frac{4}{(2\sqrt{2})^{3}} \qquad : \qquad \frac{2}{\left(\frac{4}{\sqrt{3}}\right)^{3}} \qquad : \qquad \frac{1}{(2)^{3}}$$

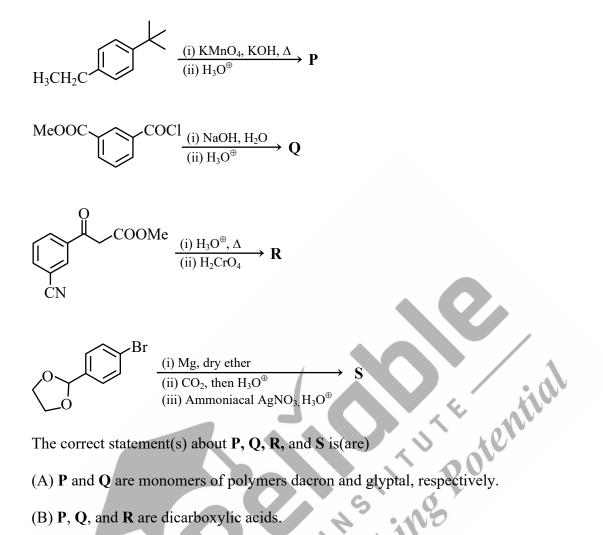
$$\frac{4}{16\sqrt{2}} \qquad : \qquad \frac{2\times 3\sqrt{3}}{64} \qquad : \qquad \frac{1}{8}$$

9	$\frac{1}{4\sqrt{2}}$:	$\frac{3\sqrt{3}}{32}$:	$\frac{1}{8}$
	0.707	:	0.65	:	0.5

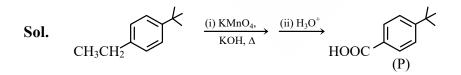
 $Order: \therefore \eta_x > \eta_y > \eta_z$

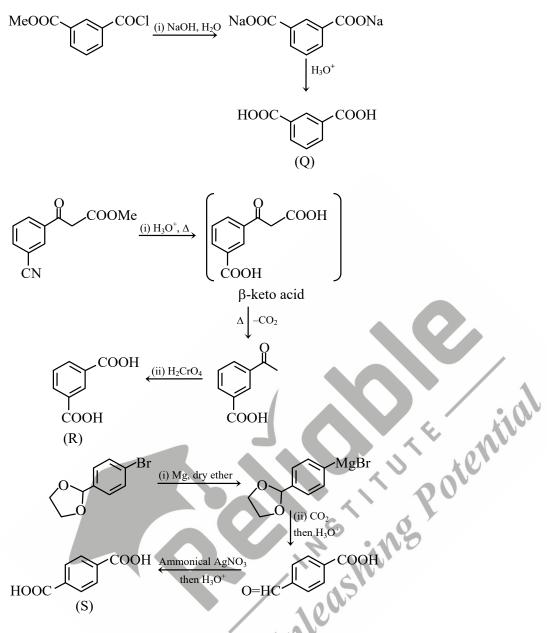
(B, C, D)

, 0, 2)		
Х	Y	Z
$L_x = 2\sqrt{2} r_x$	$L_y = \frac{4r_y}{\sqrt{3}}$	$L_z = 2r_z$
	$=\frac{4\times\frac{8}{\sqrt{3}}r_{x}}{\sqrt{3}}$ $=\frac{32}{3}r_{x}$	$=2\times\frac{\sqrt{3}}{2}\times\frac{8}{\sqrt{3}}r_{x}$ $=8r_{x}$
$L_{y} > L_{z} > L_{x}$ $\rho_{x} = \frac{4 \times \frac{M_{x}}{N_{A}}}{L_{x}^{3}}$	$\rho_{y} = \frac{2 \times \frac{M_{y}}{N_{A}}}{\frac{L^{3}}{y}}$	$\rho_{z} = \frac{1 \times \frac{M_{z}}{N_{A}}}{L_{z}^{3}}$
$=\frac{4\times\frac{M_z}{3}}{N_A\times\left(2\sqrt{2}r_x\right)^3}$	$=\frac{2\times\frac{2}{3}M_z}{N_A\times\left(\frac{32}{3}r_x\right)^2}$	$=\frac{1\times M_z}{N_A(8r_x)^3}$
$=\frac{4}{3\times8\times2\sqrt{2}}\times\frac{M_{z}}{N_{A}\times r_{x}^{3}}$	$=\frac{4}{3}\times\frac{3\times3\times3}{32\times32\times32}\frac{M_z}{N_Ar_x^3}$	$=\frac{1\times M_z}{N_A\times 512r_x^3}$
$=\frac{1}{12\sqrt{2}}\frac{M_z}{N_A r_x^3}$	$=\frac{9}{8192}\frac{M_z}{N_A r_x^3}$	$=\frac{1\times M_z}{512N_Ar_x^3}$
$=0.0589 \frac{M_z}{N_A r_x^3}$	$= 0.0010 \frac{M_z}{N_A r_x^3}$	$= 0.0019 \frac{M_z}{N_A r_x^3}$



Order of density $\rho_y < \rho_z < \rho_x$


7. In the following reactions, P, Q, R, and S are the major products.


- (C) Compounds **Q** and **R** are the same.
- (D) **R** does **not** undergo aldol condensation and **S** does **not** undergo Cannizzaro reaction.

[Reduction, Oxidation, Hydrolysis & Decarboxylation] (M)

Ans. (CD)

SECTION 3 (Maximum Marks: 24)

- This section contains **SIX (06)** questions.
- The answer to each question is a **NON-NEGATIVE INTEGER**.
- For each question, enter the correct integer corresponding to the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme: Full Marks : +4 If ONLY the correct integer is entered;
 Zero Marks : 0 In all other cases.
- 8. H_2S (5 moles) reacts completely with acidified aqueous potassium permanganate solution. In this reaction, the number of moles of water produced is **x**, and the number of moles of electrons involved is **y**. The value of $(\mathbf{x} + \mathbf{y})$ is _____.

JTE otential

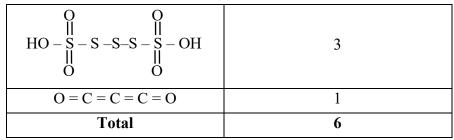
Ans. 18

- Sol. $S^{2-} \longrightarrow S + 2e^{-} \times 5$ $\underline{MnO_4^{-} + 8H^{+} + 5e^{-} \longrightarrow Mn^{2+} + 4H_2O} \times 2$ $\overline{5S^{2-} + 2MnO_4^{-} + 16H^{+} \longrightarrow 5S + 2Mn^{2+} + 8H_2O}$ x = 8, y = 10x + y = 8 + 10 = 18
- 9. Among $[I_3]^+$, $[SiO_4]^{4-}$, SO_2Cl_2 , XeF_2 , SF_4 , ClF_3 , $Ni(CO)_4$, XeO_2F_2 , $[PtCl_4]^{2-}$, XeF_4 , and $SOCl_2$, the total number of species having sp³ hybridised central atom is _____.

Ans. 5

Sol.	I_3^{+}		sp ³
	${\rm SiO_4}^{4-}$		sp ³
	SO_2Cl_2		sp ³
	XeF ₂		sp ³ d
	SF_4		sp ³ d
	ClF ₃		sp ³ d
	Ni(CO) ₄	_	sp ³
	XeO_2F_2		sp ³ d
	$[PtCl_4]^{2-}$	—	dsp ²
	XeF ₄	_	sp^3d^2
	SOCl ₂	_	sp ³

10. Consider the following molecules: Br_3O_8 , F_2O , $H_2S_4O_6$, $H_2S_5O_6$, and C_3O_2 . Count the number of atoms existing in their zero oxidation state in each molecule. Their sum is____.


Ans. 6

Sol.

Structure	No. of atoms having zero oxidation state	
$O = \begin{bmatrix} O & O & O \\ & & \\ Br - Br - Br - Br \\ & \\ O & O \end{bmatrix} O$	0	
F F	0	
HO - S - S - S - S - OH	2	

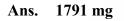
JEE (ADVANCED) JUNE 2023 DATE-04/06/2023 (PAPER-2)

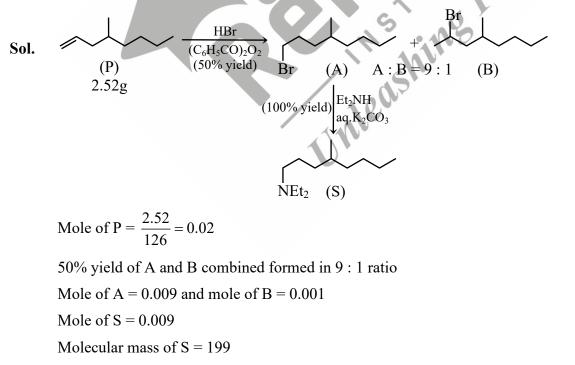
- For He⁺, a transition takes place from the orbit of radius 105.8 pm to the orbit of radius 26.45 pm. 11. The wavelength (in nm) of the emitted photon during the transition is _____. [Use: Bohr radius, a = 52.9 pmRydberg constant, $R_{\rm H} = 2.2 \times 10^{-18} \, {\rm J}$ Planck's constant, $h = 6.6 \times 10^{-34} \text{ J s}$ Speed of light, $c = 3 \times 10^8 \text{ m}^{s-1}$] 30 (Atomic Structure) (M) Ans. Z = 2Sol. $r = \frac{an^2}{\pi}$ $\Rightarrow 52.9 \frac{n^2}{2} = 105.8$ Unleashing Potential n = 2 $\Rightarrow 52.9 \frac{n^2}{2} = 26.45$ n = 1 $\frac{1}{\lambda} = RZ^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$ $\frac{1}{\lambda} = \mathbf{R} \times 4 \times \frac{3}{4} = 3\mathbf{R}$ $\frac{hc}{\lambda} = 3R$ $= 3 \times 2.2 \times 10^{-18} \text{ J}$ $\lambda = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{3 \times 2.2 \times 10^{-18}} \,\mathrm{m}$ $= 3 \times 10^{-8} \text{ m}$ = 30 nm
- 12. 50 mL of 0.2 molal urea solution (density = 1.012 g mL⁻¹ at 300 K) is mixed with 250 mL of a solution containing 0.06 g of urea. Both the solutions were prepared in the same solvent. The osmotic pressure (in Torr) of the resulting solution at 300 K is ____. [Use: Molar mass of urea = 60 g mol⁻¹; gas constant, R = 62 L Torr K⁻¹ mol⁻¹; Assume, Δ_{mix}H = 0, Δ_{mix}V = 0]
 Ans. 682 (Solutions & Colligative properties)

- **Sol.** For 1st solution: $0.2 = \frac{W_{urea} / 60}{\left(\frac{50 \times 1.012 W_{urea}}{1000}\right)}$
 - \therefore W_{urea} = 0.6 g

For 2^{nd} solution, Wu = 0.06 g & V_{sol} = 250 mL

For resulting solution,


$$\pi = \text{CRT}$$
$$= \left(\frac{0.66 / 60}{0.3}\right) \times 62 \times 300$$
$$= 682 \text{ torr}$$


13. The reaction of 4-methyloct-1-ene (\mathbf{P} , 2.52 g) with HBr in the presence of (C_6H_5CO)₂O₂ gives two isomeric bromides in a 9 : 1 ratio, with a combined yield of 50%. Of these, the entire amount of the primary alkyl bromide was reacted with an appropriate amount of diethylamine followed by treatment with aq. K₂CO₃ to give a non-ionic product S in 100% yield.

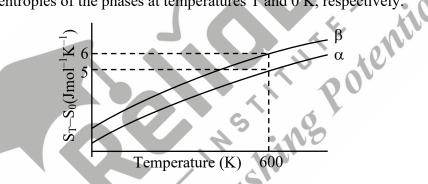
The mass (in mg) of **S** obtained is ____.

[Use molar mass (in g mol⁻¹): H = 1, C = 12, N = 14, Br = 80]

[Aromatic Compounds] (T)

So mass obtained of S = $199 \times 0.009 = 1.791$ g

 $1.791 \times 1000 = 1791 \text{ mg}$


SECTION 4 (Maximum Marks: 12)

- This section contains **TWO (02)** paragraphs.
- Based on each paragraph, there are **TWO (02)** questions.
- The answer to each question is a **NUMERICAL VALUE**.
- For each question, enter the correct numerical value of the answer using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.
- If the numerical value has more than two decimal places, **truncate/round-off** the value to **TWO** decimal places.
- Answer to each question will be evaluated according to the following marking scheme:
 Full Marks : +3 If ONLY the correct numerical value is entered in the designated place;
 Zero Marks : 0 In all other cases.

"PARAGRAPH I"

The entropy versus temperature plot for phases α and β at 1 bar pressure is given.

 S_T and S_0 are entropies of the phases at temperatures T and 0 K, respectively.

The transition temperature for α to β phase change is 600 K and $C_{p,\beta} - C_{p,\alpha} = 1 \text{ Jmol}^{-1}\text{K}^{-1}$. Assume $(C_{p,\beta} - C_{p,\alpha})$ is independent of temperature in the range of 200 to 700 K. $C_{p,\alpha}$ and $C_{p,\beta}$ are heat capacities of α and β phases, respectively.

14. The value of entropy change, $S_{\beta} - S_{\alpha}$ (in J mol⁻¹ K⁻¹), at 300 K is _____.

[Use: $\ln 2 = 0.69$]

Given: $S_{\beta} - S_{\alpha} = 0$ at 0 K]

Sol.
$$S_{\alpha} \longrightarrow S_{\beta}$$

 $(300 \text{ K}) \qquad (300 \text{ K})$
 $\Delta S_{1} \downarrow \qquad \uparrow \Delta S_{3}$
 $S_{\alpha} \longrightarrow S_{\beta}$
 $(600 \text{ K}) \qquad (600 \text{ K})$

$$\begin{split} \Delta S_1 &= C_{p,\alpha} \, \ln \frac{600}{300} \\ \Delta S_3 &= C_{p,\beta} \, \ln \left(\frac{300}{600} \right) \\ \Delta S_2 &= (S_{\beta} - S_{\alpha})_{600 \, \text{K}} = (S_{\beta} - S_{\alpha})_{600 \, \text{K}} + \underbrace{\left(S_{\beta} - S_{\alpha} \right)_{0\text{K}}}_{\text{gives as zero}} \\ &= \left(S_{\beta_{600\text{K}}} - S_{\beta_{0\text{K}}} \right) - \left(S_{\alpha_{600\text{K}}} - S_{\alpha_{0\text{K}}} \right) = 1 \\ \Delta S_{\text{total}} &= C_{p,\alpha} \, \ln 2 + C_{p,\beta} \ln \left(\frac{1}{2} \right) + 1 \\ &= \ln 2 (C_{p,\alpha} - C_{p,\beta}) + 1 \\ &= \ln 2 (-1) + 1 \\ &= -0.69 + 1 = 0.31 \, \text{J/mole-K} \end{split}$$

The value of enthalpy change, $H_{\beta} - H_{\alpha}$ (in J mol⁻¹), at 300 K is 15.

Ans. 300

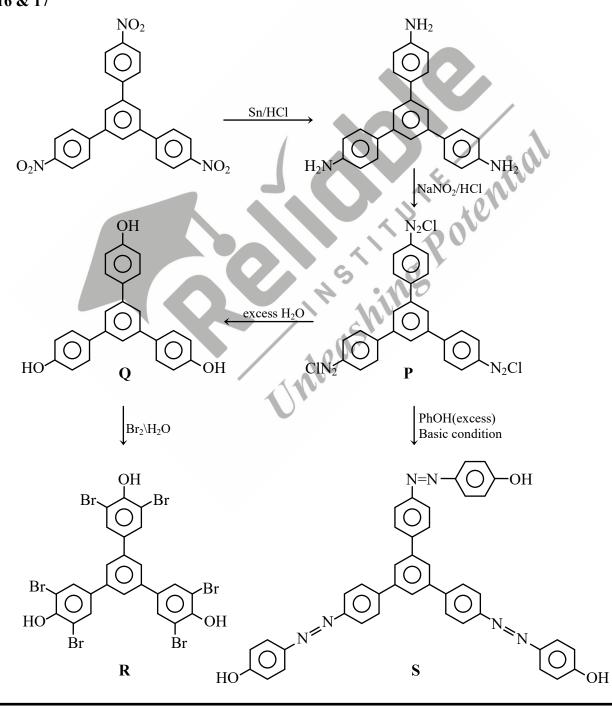
15. The value of enthalpy change,
$$H_{\beta} - H_{\alpha}$$
 (in J mol⁻¹), at 300 K is ____.
Ans. 300
Sol. $H_{\alpha} \longrightarrow H_{\beta}$
 $(300 \text{ K}) \quad (300 \text{ K})$
 $AH_{1} \downarrow \qquad \uparrow AH_{3}$
 $H_{\alpha} \longrightarrow H_{\beta}$
 $(600 \text{ K}) \quad (600 \text{ K})$
 $\Delta H_{1} = C_{p,\alpha}(300)$
 $\Delta H_{3} = -C_{p,\beta}(300)$
 $\Delta G_{2} = \Delta H_{2} - T\Delta S_{2} = 0$ (\because transition temperature is 600 K)
 $0 = \Delta H_{2} - 600$ (1)
 $\Delta H_{2} = (600)(1) \frac{J}{mol}$
 $\Delta H_{total} = 300(C_{p,\alpha} - C_{p,\beta}) + 600$
 $= 300(-1) + 600$
 $= 300 \text{ J/mol}$

"PARAGRAPH II"

A trinitro compound, 1,3,5-tris-(4-nitrophenyl)benzene, on complete reaction with an excess of Sn/HCl gives a major product, which on treatment with an excess of NaNO₂/HCl at 0°C provides **P** as the product. **P**, upon treatment with excess of H_2O at room temperature, gives the product **Q**. Bromination of Q in aqueous medium furnishes the product R. The compound P upon treatment with an excess of phenol under basic conditions gives the product S.

The molar mass difference between compounds \mathbf{Q} and R is 474 g mol⁻¹ and between compounds **P** and **S** is 172.5 g mol^{-1} .

16. The number of heteroatoms present in one molecule of **R** is ______. [Use: Molar mass (in g mol⁻¹): H = 1, C = 12, N = 14, O = 16, Br = 80, Cl = 35.5Atoms other than C and H are considered as heteroatoms]


[Aromatic Compounds] (M)

Ans. 9

17. The total number of carbon atoms and heteroatoms present in one molecule of S is ______. [Use: Molar mass (in g mol⁻¹): H = 1, C = 12, N = 14, O = 16, Br = 80, Cl = 35.5 Atoms other than C and H are considered as heteroatoms]

[Aromatic Compounds] (M)

Ans. 51 Sol. 16 & 17

Heteroatoms = 9 in **R**

JEE (ADVANCED) JUNE 2023 DATE-04/06/2023 (PAPER-2)

Total number of C atoms and Heteroatoms present in S = 51

(Classroom) ··-→ selected for

ASIAN PACIFIC MATHEMATICS OLYMPIAD (APMO) 2023

IMOTC 2023 Camp (Conducted by HBCSE)

Success Delivered to the Deserving

RELIABLE INSTITUTE : A-10, Road No.1, IPIA, Kota-324005 (Rajasthan), India Tel. : 0744-3535544, 2665544 | Website : www.reliablekota.com | E-mail : info@reliablekota.com f reliablekota reliablekota reliablekota reliablekota